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ABSTRACT
Spectral factorization is a computational procedure for constructing minimum-phase
(stable inverse) filters required for recursive inverse filtering. We present a novel
method of spectral factorization. The method iteratively constructs an approxima-
tion of the minimum-phase filter with the given autocorrelation by repeated forward
and inverse filtering and rearranging of the terms. This procedure is especially efficient
in the multidimensional case, where the inverse recursive filtering is enabled by the
helix transform.

To exemplify a practical application of the proposed method, we consider the prob-
lem of smooth two-dimensional data regularization. Splines in tension are smooth
interpolation surfaces whose behaviour in unconstrained regions is controlled by the
tension parameter. We show that such surfaces can be efficiently constructed with
recursive filter preconditioning and we introduce a family of corresponding two-
dimensional minimum-phase filters. The filters are created by spectral factorization
on a helix.

I N T R O D U C T I O N

Spectral factorization is the task of estimating a minimum-
phase signal from a given power spectrum. The advent of
the helical coordinate system (Mersereau and Dudgeon 1974;
Claerbout 1998) has led to renewed interest in spectral factor-
ization algorithms, since they now apply to multidimensional
problems. Specifically, spectral factorization algorithms pro-
vide the key to rapid multidimensional recursive filtering with
arbitrary functions, which in turn has geophysical applica-
tions in preconditioning inverse problems (Clapp et al. 1998;
Fomel and Claerbout 2003), wavefield extrapolation (Rickett,
Claerbout and Fomel 1998; Rickett 2000; Zhang , Zhang and
Zhou 2000; Zhang and Shan 2001) and three-dimensional
noise attenuation (Ozdemir et al. 1999a,b; Rickett, Guitton
and Gratwick 2001).

∗E-mail: sergey.fomel@beg.utexas.edu

The Kolmogoroff (cepstral or Hilbert transform) method of
spectral factorization (Kolmogoroff 1939; Claerbout 1976;
Oppenheim and Shafer 1989) is often used by the geophysical
community because of its computational efficiency. However,
as a frequency-domain method, it has certain limitations. For
example, the assumption of periodic boundary conditions of-
ten requires extreme amounts of zero-padding for a stable
factorization. This is one of the limitations which make this
method inconvenient for multidimensional applications.

The Wilson–Burg method, introduced in this paper, is an it-
erative algorithm for spectral factorization based on Newton’s
iterations. The algorithm exhibits quadratic convergence. It
provides a time-domain approach that is potentially more ef-
ficient than the Kolmogoroff method. We include a detailed
comparison of the two methods.

Recent surveys (Goodman et al. 1997; Sayed and Kailith
2001) have discussed some other methods for spectral fac-
torization, such as the Schur method (Schur 1917), the
Bauer method (Bauer 1955) and Wilson’s original method
(Wilson 1969). The latter is noted for its superb numerical
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properties. We introduce Burg’s modification to this algo-
rithm, which raises the computational attractiveness of this
method to a new level. The Wilson–Burg method avoids the
need for matrix inversion, essential for the original Wilson’s
algorithm, and it reduces the computational effort from O(N3)
operations to O(N2) operations per iteration. An alternative
way of accelerating Wilson’s iteration was suggested by Laurie
(1980). We have found the Wilson–Burg algorithm to be es-
pecially suitable for applications of multidimensional helical
filtering, where the number of filter coefficients can be small,
and the cost effectively reduces to O(N ) operations.

The second part of the paper contains a practical example
of the introduced spectral factorization method. The method
is applied to the problem of two-dimensional smooth data
regularization. This problem often occurs in mapping poten-
tial fields data and in other geophysical problems. Applying
the Wilson–Burg spectral factorization method, we construct
a family of 2D recursive filters, which correspond to differ-
ent values of tension in the tension-spline approach to data
regularization (Smith and Wessel 1990). We then use the con-
structed filters for an efficient preconditioning of the data reg-
ularization problem. The combination of an efficient spectral
factorization and an efficient preconditioning technique pro-
vides an attractive practical method for multidimensional data
interpolation. The technique is illustrated with bathymetry
data from the Sea of Galilee (Lake Kinneret) in Israel.

D E S C R I P T I O N O F T H E M E T H O D

Spectral factorization constructs a minimum-phase signal
from its spectrum. The algorithm, suggested by Wilson (1969),
approaches this problem directly with Newton’s iterative
method. In a Z-transform notation, Wilson’s method implies
solving the equation,

S(Z ) = A(Z )Ā(1/Z ), (1)

for a given spectrum S(Z ) and unknown minimum-phase sig-
nal A(Z ) with an iterative linearization,

S(Z ) = At(Z )Āt(1/Z ) + At(Z )[Āt+1(1/Z ) − Āt(1/Z)]

+ Āt(1/Z )[At+1(Z ) − At(Z )]

= At(Z )Āt+1(1/Z ) + Āt(1/Z )At+1(Z )− At(Z )Āt(1/Z ),

(2)

where At(Z ) denotes the signal estimate at iteration t. Start-
ing from some initial estimate A0(Z ), such as A0(Z ) = 1, the
linear system (2) is solved iteratively for the updated signal
At+1(Z ). Wilson (1969) presented a rigorous proof that iter-
ation (2) operates with minimum phase signals provided that

the initial estimate A0(Z ) is minimum phase. The original al-
gorithm estimates the new approximation At+1(Z ) by matrix
inversion implied in the solution of the system.

Burg (1998, pers. comm.) recognized that dividing both
sides of (2) by Āt(1/Z )At(Z ) leads to a particularly conve-
nient form, where the terms on the left are symmetric, and the
two terms on the right are correspondingly strictly causal and
anticausal:

1 + S(Z )

Āt(1/Z )At(Z )
= At+1(Z )

At(Z )
+ Āt+1(1/Z )

Āt(1/Z )
. (3)

Equation (3) leads to the Wilson–Burg algorithm, which
accomplishes spectral factorization by a recursive application
of convolution (polynomial multiplication) and deconvolution
(polynomial division). The algorithm proceeds as follows:
1 Compute the left side of (3) using forward and adjoint poly-
nomial division.
2 Abandon negative lags, to keep only the causal part of
the signal, and also keep half of the zero lag. This gives us
At+1(Z )/At(Z ).
3 Multiply out (convolve) the denominator At(Z ). Now we
have the desired result At+1(Z ).
4 Iterate until convergence.

An example of the Wilson–Burg convergence is shown in
Table 1 on a simple 1D signal. The autocorrelation S(Z ) in
this case is 1334 + 867 (Z + 1/Z ) + 242 (Z2 + 1/Z2) +
24(Z3 + 1/Z3) and the corresponding minimum-phase signal
is A(Z ) = (2 + Z )(3 + Z )(4 + Z ) = 24 + 26Z + 9Z2 + Z3.
A quadratic rate of convergence is visible from the table. The
convergence slows down for signals whose polynomial roots
are close to the unit circle (Wilson 1969).

The clear advantage of the Wilson–Burg algorithm in com-
parison with the original Wilson algorithm is in the elimination
of the expensive matrix inversion step. Only convolution and
deconvolution operations are used at each iteration step.

Table 1 Example of convergence of the Wilson–Burg iteration

Iteration a0 a1 a2 a3

0 1.000000 0.000000 0.000000 0.000000
1 36.523964 23.737839 6.625787 0.657103
2 26.243151 25.726116 8.471050 0.914951
3 24.162354 25.991493 8.962727 0.990802
4 24.001223 25.999662 9.000164 0.999200
5 24.000015 25.999977 9.000029 0.999944
6 23.999998 26.000002 9.000003 0.999996
7 23.999998 26.000004 9.000001 1.000000
8 23.999998 25.999998 9.000000 1.000000
9 24.000000 26.000000 9.000000 1.000000
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Wilson–Burg spectral factorization 411

Comparison of Wilson–Burg and Kolmogoroff methods

The Kolmogoroff (cepstral or Hilbert transform) spectral fac-
torization algorithm (Kolmogoroff 1939; Claerbout 1976;
Oppenheim and Shafer 1989) is widely used because of its
computational efficiency. While this method is easily extended
to the multidimensional case with the help of a helical trans-
form (Rickett and Claerbout 1999), there are several circum-
stances that make the Wilson–Burg method more attractive in
multidimensional filtering applications.
� The Kolmogoroff method takes O(N log N) operations,

where N is the length of the autocorrelation function. The
cost of the Wilson–Burg method is proportional to [num-
ber of iterations] × [filter length] × N. If we keep the filter
small and limit the number of iterations, the Wilson–Burg
method can be cheaper (linear in N). In comparison, the cost
of the original Wilson’s method is [number of iterations] ×
O(N3).

� The Kolmogoroff method works in the frequency domain
and assumes periodic boundary conditions. Autocorrelation
functions, therefore, need to be padded with zeros before
they are Fourier transformed. For functions with zeros near

Figure 1 Example of 2D Wilson–Burg fac-
torization. Top left: the input filter; top right:
its autocorrelation; bottom left: the factor
obtained by the Wilson–Burg method; bot-
tom right: the result of deconvolution.

the unit circle, the padding may need to be many orders
of magnitude greater than the original filter length N. The
Wilson–Burg method is implemented in the time domain,
where no extra padding is required.

� Newton’s method (the basis of the Wilson–Burg algorithm)
converges quickly when the initial guess is close to the solu-
tion. If we take advantage of this property, the method may
converge in one or two iterations, reducing the cost even
further. It is impossible to make use of an initial guess with
the Kolmogoroff method.

� The Kolmogoroff method, when applied to helical filtering,
involves the dangerous step of truncating the filter coeffi-
cients to reduce the size of the filter. If the autocorrelation
function has roots close to the unit circle, truncating filter
coefficients may easily lead to non-minimum-phase filters.
The Wilson–Burg method allows us to fix the shape of the
filter from the very beginning. This does not guarantee that
we will find the exact solution, but at least we can obtain
a reasonable minimum-phase approximation to the desired
filter. The safest practical strategy in the case of an unknown
initial estimate is to start with finding the longest possible
filter, remove those of its coefficients that are smaller than a
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L

Figure 2 Creating a minimum-phase
Laplacian filter. Top left: Laplacian filter;
top right: its autocorrelation (biharmonic
filter); bottom left: factor obtained by the
Wilson–Burg method (minimum-phase
Laplacian); bottom right: the result of
deconvolution.

Figure 3 2D deconvolution with the minimum-phase Laplacian. Left: input; centre: output of deconvolution; right: output of deconvolution and
adjoint deconvolution (equivalent to solving the biharmonic differential equation).

certain threshold, and repeat the factorizing process again
with the shorter filter.

Factorization examples

The first simple example of helical spectral factorization is
shown in Fig. 1. A minimum-phase factor is found by spectral

factorization of its autocorrelation. The result is additionally
confirmed by applying inverse recursive filtering, which turns
the filter into a spike (the rightmost plot in Fig. 1.)

A practical example is depicted in Fig. 2. The symmetric
Laplacian operator is often used in practice for regularizing
smooth data. In order to construct a corresponding recursive
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Figure 4 1D minimum-phase filters for different values of the tension
parameter λ. The filters range from the second derivative for λ = 0 to
the first derivative for λ = 1.

preconditioner, we factorize the Laplacian autocorrelation
(the biharmonic operator) using the Wilson–Burg algorithm.
Figure 2 shows the resultant filter. The minimum-phase Lapla-
cian filter has several times more coefficients than the original
Laplacian. Therefore, its application would be more expensive
in a convolution application. The real advantage follows from
the applicability of the minimum-phase filter for inverse filter-
ing (deconvolution). The gain in convergence from recursive
filter preconditioning outweighs the loss of efficiency from the
longer filter. Figure 3 shows a construction of the smooth in-
verse impulse response by application of the C = P PT operator,
where P is deconvolution with the minimum-phase Laplacian.
The application of C is equivalent to a numerical solution of
the biharmonic equation, discussed in the next section.

A P P L I C AT I O N O F S P E C T R A L
FA C T O R I Z AT I O N : R E G U L A R I Z I N G
S M O O T H D ATA W I T H S P L I N E S I N T E N S I O N

The method of minimum curvature is an old and ever-popular
approach for constructing smooth surfaces from irregularly
spaced data (Briggs 1974). The surface of minimum curvature
corresponds to the minimum of the Laplacian power or, in
an alternative formulation, satisfies the biharmonic differen-
tial equation. Physically, it models the behaviour of an elas-
tic plate. In the one-dimensional case, the minimum-curvature
method leads to the natural cubic spline interpolation (de Boor
1978). In the 2D case, a surface can be interpolated with bi-
harmonic splines (Sandwell 1987) or gridded with an itera-

Figure 5 Interpolating a simple 1D synthetic with recursive filter pre-
conditioning for different values of the tension parameter λ. The input
data are shown at the top. The interpolation results range from a nat-
ural cubic spline interpolation for λ = 0 to linear interpolation for
λ = 1.

tive finite-difference scheme (Swain 1976). We approach the
gridding (data regularization) problem with an iterative least-
squares optimization scheme.

In most practical cases, the minimum-curvature method
produces a visually pleasing smooth surface. However, in
cases of large changes in the surface gradient, the method can
create strong artificial oscillations in the unconstrained
regions. Switching to lower-order methods, such as minimiz-
ing the power of the gradient, solves the problem of extrane-
ous inflections, but also removes the smoothness constraint
and leads to gradient discontinuities (Fomel and Claerbout
1995). A remedy, suggested by Schweikert (1966), is known
as splines in tension. Splines in tension are constructed by
minimizing a modified quadratic form that includes a tension
term. Physically, the additional term corresponds to tension
in elastic plates (Timoshenko and Woinowsky-Krieger 1968).
Smith and Wessel (1990) developed a practical algorithm of

C© 2003 European Association of Geoscientists & Engineers, Geophysical Prospecting, 51, 409–420



414 S. Fomel et al.

2D gridding with splines in tension and implemented it in the
popular GMT software package.

In this section, we develop an application of helical precon-
ditioning to gridding with splines in tension. We accelerate
an iterative data regularization algorithm by recursive pre-
conditioning with multidimensional filters defined on a helix
(Fomel and Claerbout 2003). The efficient Wilson–Burg spec-
tral factorization constructs a minimum-phase filter suitable
for recursive filtering.

We introduce a family of 2D minimum-phase filters for dif-
ferent degrees of tension. The filters are constructed by spec-
tral factorization of the corresponding finite-difference forms.
In the case of zero tension (the original minimum-curvature
formulation), we obtain a minimum-phase version of the
Laplacian filter. The case of infinite tension leads to spectral
factorization of the Laplacian and produces the helical deriva-

tive filter (Claerbout 2003).
The tension filters can be applied not only for data regular-

ization but also for preconditioning in any estimation prob-
lems with smooth models. Tomographic velocity estimation is
an obvious example of such an application (Woodward et al.

1998).
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splines-in-tension schemes for different val-
ues of the tension parameter (contour plots).

Mathematical theory of splines in tension

The traditional minimum-curvature criterion implies seeking
a two-dimensional surface f (x, y) in region D, which corre-
sponds to the minimum of the Laplacian power:

∫
D

∫
|∇2 f (x, y)|2 dx dy, (4)

where ∇2 denotes the Laplacian operator: ∇2 = ∂2

∂x2 + ∂2

∂y2 .
Alternatively, we can seek f (x, y) as the solution of the bi-

harmonic differential equation,

(∇2)2 f (x, y) = 0. (5)

Fung (1965) and Briggs (1974) derived (5) directly from (4)
with the help of the variational calculus and Gauss’s theorem.

Formula (4) approximates the strain energy of a thin elas-
tic plate (Timoshenko and Woinowsky-Kreiger 1968). Taking
tension into account modifies both the energy formula (4) and
the corresponding equation (5). Smith and Wessel (1990) sug-
gested the following form of the modified equation:

[(1 − λ)(∇2)2 − λ(∇2)] f (x, y) = 0, (6)
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where the tension parameter λ ranges from 0 to 1. The corre-
sponding energy functional is

∫
D

∫
[(1 − λ)|∇2 f (x, y)|2 + λ|∇ f (x, y)|2] dx dy. (7)

Zero tension leads to the biharmonic equation (5) and cor-
responds to the minimum-curvature construction. The case of
λ = 1 corresponds to infinite tension. Although infinite tension
is physically impossible, the resulting Laplace equation does
have the physical interpretation of a steady-state temperature
distribution. An important property of harmonic functions
(solutions of the Laplace equation) is that they cannot have
local minima and maxima in the free regions. With respect to
interpolation, this means that, in the case of λ = 1, the inter-
polation surface will be constrained to have its local extrema
only at the input data locations.

N. Sleep (2000, pers. comm.) pointed out that if the tension
term λ∇2 is written in the form ∇ · (λ∇), we can follow an
analogy with heat flow and electrostatics and generalize the
tension parameter λ to a local function depending on x and y.
In a more general form, λ could be a tensor allowing for an
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splines-in-tension schemes for different val-
ues of the tension parameter (cross-section
plots). The dashed lines show the exact spec-
tra for continuous operators.

anisotropic smoothing in some predefined directions, similarly
to the steering-filter method (Clapp et al. 1998).

To interpolate an irregular set of data values f k at points
(xk, yk), we need to solve (6) under the constraint,

f (xk, yk) = fk. (8)

We can accelerate the solution by recursive filter precondition-
ing. If A is the discrete filter representation of the differential
operator in (6) and we can find a minimum-phase filter D
whose autocorrelation is equal to A, then an appropriate pre-
conditioning operator is a recursive inverse filtering with the
filter D. The preconditioned formulation of the interpolation
problem takes the form of the least-squares system (Claerbout
2003),

KD−1p ≈ fk, (9)

where fk represents the vector of known data, K is the operator
of selecting the known data locations, and p is the precondi-
tioned variable: p = Df. After obtaining an iterative solution
of system (9), we reconstruct the model f by inverse recur-
sive filtering: f = D−1p. Formulating the problem in helical
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Figure 8 Inverse filtering with the tension filters. The left plots show the inputs composed of filters and spikes. Inverse filtering turns filters
into impulses and spikes into inverse filter responses (middle plots). Adjoint filtering creates smooth isotropic shapes (right plots). The tension
parameter takes the values 0.3, 0.7 and 1 (from top to bottom). The case of zero tension corresponds to Fig. 3.

coordinates (Mersereau and Dudgeon 1974; Claerbout 1998)
enables both the spectral factorization of A and the inverse
filtering with D.

Finite differences and spectral factorization

In the 1D case, one finite-difference representation of the
squared Laplacian is as a centred 5-point filter with coeffi-
cients (1, −4, 6, −4, 1). On the same grid, the Laplacian op-

erator can be approximated to the same order of accuracy
with the filter (1/12, −4/3, 5/2, −4/3, 1/12). Combining the
two filters in accordance with (6) and performing the spectral
factorization, we can obtain a 3-point minimum-phase filter
suitable for inverse filtering. Figure 4 shows a family of 1D
minimum-phase filters for different values of the parameter λ.
Figure 5 demonstrates the interpolation results obtained with
these filters on a simple 1D synthetic. As expected, a small
tension value (λ = 0.01) produces a smooth interpolation,
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but creates artificial oscillations in the unconstrained regions
around sharp changes in the gradient. The value of λ = 1 leads
to linear interpolation with no extraneous inflections but with
discontinuous derivatives. Intermediate values of λ allow us
to achieve a compromise: a smooth surface with constrained
oscillations.

To design the corresponding filters in two dimensions, we
define the finite-difference representation of operator (6) on
a 5 × 5 grid. The filter coefficients are chosen with the help
of the Taylor expansion to match the desired spectrum of the
operator around the zero spatial frequency. The matching con-
ditions lead to the following set of coefficients for the squared
Laplacian:

−1/60 2/5 7/30 2/5 −1/60

2/5 −14/15 −44/15 −14/15 2/5

7/30 −44/15 57/5 −44/15 7/30

2/5 −14/15 −44/15 −14/15 2/5

−1/60 2/5 7/30 2/5 −1/60

= 1/60

−1 24 14 24 −1

24 −56 −176 −56 24

14 −176 684 −176 14

24 −56 −176 −56 24

−1 24 14 24 −1

The Laplacian representation with the same order of accuracy
has the coefficients:

−1/360 2/45 0 2/45 −1/360

2/45 −14/45 −4/5 −14/45 2/45

0 −4/5 41/10 −4/5 0

2/45 −14/45 −4/5 −14/45 2/45

−1/360 2/45 0 2/45 −1/360

= 1/360

−1 16 0 16 −1

16 −112 −288 −112 16

0 −288 1476 −288 0

16 −112 −288 −112 16

−1 16 0 16 −1

For the sake of simplicity, we assumed equal spacing in the
x- and y-directions. The coefficients can be easily adjusted
for anisotropic spacing. Figures 6 and 7 show the spectra of
the finite-difference representations of operator (6) for dif-
ferent values of the tension parameter. The finite-difference
spectra appear to be fairly isotropic (independent of angle in
polar coordinates). They match the exact expressions at low
frequencies.

Figure 9 The Sea of Galilee data set after nearest-neighbour binning.
The binned data are used as input for the missing data interpolation
program.

Regarding the finite-difference operators as 2D autocorre-
lations and applying the Wilson–Burg method of spectral fac-
torization, we obtain 2D minimum-phase filters suitable for
inverse filtering. The exact filters contain many coefficients,
which rapidly decrease in magnitude at a distance from the
first coefficient. For reasons of efficiency, it is advisable to
restrict the shape of the filter so that it contains only the
significant coefficients. Keeping all the coefficients that are
1000 times smaller in magnitude than the leading coefficient
creates a 53-point filter for λ = 0 and a 35-point filter for
λ = 1, with intermediate filter lengths for intermediate values
of λ. Keeping only the coefficients that are 200 times smaller
than the leading coefficient, we obtain 25- and 16-point fil-
ters for λ = 0 and λ = 1, respectively. The restricted filters
do not factorize the autocorrelation exactly but provide an
effective approximation of the exact factors. As outputs of
the Wilson–Burg spectral factorization process, they obey the
minimum-phase condition.

Figure 8 shows the 2D filters for different values of λ and
illustrates inverse recursive filtering, which is the essence of
the helix method (Claerbout 1998). The case of λ = 1 leads
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Figure 10 The Sea of Galilee data set after missing data interpolation with helical preconditioning. Different plots correspond to different values
of the tension parameter. An east–west derivative filter was applied to illuminate the surface.

to the filter known as a helix derivative (Claerbout 2003).
The filter values are spread mostly in two columns. The other
boundary case (λ = 0) leads to a three-column filter, which
serves as the minimum-phase version of the Laplacian. This

filter is similar to the one shown in Fig. 3. As expected from
the theory, the inverse impulse response of this filter is no-
ticeably smoother and wider than the inverse response of the
helix derivative. Filters corresponding to intermediate values
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Figure 11 Cross-sections of the Sea of Galilee data set after missing-
data interpolation with helical preconditioning. Different plots corre-
spond to different values of the tension parameter.

of λ exhibit intermediate properties. Theoretically, the inverse
impulse response of the filter corresponds to the Green’s func-
tion of (6). The theoretical Green’s function for the case of
λ = 1 is

G = 1
2π

ln r, (10)

where r is the distance from the impulse: r =√
(x − xk)

2 + (y − yk). In the case of λ = 0, the Green’s func-
tion is smoother at the origin:

G = 1
8π

r2 ln r. (11)

The expression for the theoretical Green’s function for an ar-
bitrary value of λ is unknown (Mitášová and Mitáš (1993)
derived an analytical Green’s function for a different model
of tension splines using special functions), but we can as-
sume that its smoothness lies between the two boundary
conditions.

In the next subsection, we illustrate an application of helical
inverse filtering to a 2D interpolation problem.

Regularization example

We chose an environmental data set (Claerbout 2003) for a
simple illustration of smooth data regularization. The data

were collected on a bottom-sounding survey of the Sea of
Galilee in Israel (Ben-Avraham et al. 1990). The data contain
a number of noisy, erroneous and inconsistent measurements,
which present a challenge for the traditional estimation meth-
ods (Fomel and Claerbout 1995).

Figure 9 shows the data after a nearest-neighbour binning
to a regular grid. The data were then passed to an interpo-
lation program to fill the empty bins. The results (for differ-
ent values of λ) are shown in Figs 10 and 11. Interpolation
with the minimum-phase Laplacian (λ = 0) creates a rela-
tively smooth interpolation surface but plants artificial ‘hills’
around the edge of the sea. This effect is caused by large gra-
dient changes and is similar to the sidelobe effect in the 1D
example (Fig. 5). It is clearly seen in the cross-section plots
in Fig. 11. The abrupt gradient change is a typical case of
a shelf break. It is caused by a combination of sedimenta-
tion and active rifting. Interpolation with the helix derivative
(λ = 1) is free from the sidelobe artefacts, but it also produces
an undesirable non-smooth behaviour in the middle part of
the image. As in the 1D example, intermediate tension al-
lows us to achieve a compromise: smooth interpolation in
the middle and constrained behaviour at the sides of the sea
bottom.

C O N C L U S I O N S

The Wilson–Burg spectral factorization method, presented
here, enables stable recursive filters to be constructed. The
method appears to have attractive computational properties
and can be significantly more efficient than alternative spec-
tral factorization algorithms. It is particularly suitable for the
multidimensional case, where recursive filtering is enabled by
the helix transform.

We have illustrated an application of the Wilson–Burg
method for efficient smooth data regularization. A constrained
approach to smooth data regularization leads to splines in ten-
sion. The constraint is embedded in a user-specified tension
parameter. The two boundary values of tension correspond
to cubic and linear interpolation. By applying the method
of spectral factorization on a helix, we have been able to
define a family of 2D minimum-phase filters, which corre-
spond to the spline interpolation problem with different val-
ues of tension. We have used these filters for accelerating data-
regularization problems with smooth surfaces by recursive
preconditioning. In general, they are applicable for precon-
ditioning acceleration in various estimation problems with
smooth models.
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