The Autonomous Roving Exploration System for active-source seismology on the Moon and Mars

S.W. Courville (swcourville@psi.edu)1, N. E. Putzig1, P.C. Sava2, M.R. Perry1,2, T.D. Mikesell3,
1Planetary Science Institute, Lakewood, CO. 2Colorado School of Mines, Golden, CO. 3Boise State University, Boise, ID.

Acknowledgements:
This work was funded by a NASA Early Career Fellowship (80NSSC19K0807). We thank Richard Degner, Karl Oeler, and Andrew Sedlmayr of GTI; and Andrew Gemer, Colby Moxham, and Luke Bowersox of Lunar Outpost.

Why ARES?
- Need resource evaluation at landing sites before human arrival [1]
- Orbiters can't do the job: no validated lava tube detections on Mars [2], and ice content is questioned [3]
- Active source seismology well developed [4] and has been done on the Moon before.
- Seismic data complements ground penetrating radar (GPR) data, and rovers could include GPR if desired [5,6]

ARES components
- 1 Source rover with simple and repeatable accelerated weight drop source
- 2+ Receiver rovers with mounted wireless geophones

In preparation for human exploration:
1). Near surface ice content surveying for ISRU
2). Lava tube delineation for habitation

Source Mass Tradeoff
- Greater source energy (mass and velocity) means greater investigation depth/range [7,8]
- Greater mass means more cost and complexity

Source mass and velocity vs investigation depth/range

Receiver Coupling Tradeoff
- Inserting geophones in regolith (coupling) is complex but yields more accurate data
- Mounting geophones on rover is simple but yields reverberations that reduce data quality

Acquisition Simulation

(a) Numerical wavefield simulation of weight drop source over layered regolith model depicted in scenario 1 above. (b) Synthetic data (with interpretation) as would be recorded by ARES along a radial survey line. See abstract for lava tube imaging example

References: