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SUMMARY

Wave-equation migration velocity analysis is based on the linear
relation that can be established between a perturbation in the mi-
grated image and the corresponding perturbation in the slowness
function. Our method formulates an objective function in the image
space, in contrast with other wave-equation tomography techniques
which formulate objective functions in the data space. We itera-
tively update the slowness function to account for improvements in
the focusing quality of the migrated image. Wave-equation migra-
tion velocity analysis (WEMVA) produces wrong results if it starts
from an image perturbation which is not compliant with the as-
sumed Born approximation. Other attempts to correct this problem
lead to either unreliable or hard to implement solutions. We over-
come the major limitation of the Born approximation by creating
image perturbations consistent with this approximation. Our image
perturbation operator is computed as a derivative of prestack Stolt
residual migration, thus our method directly exploits the power of
prestack residual migration in migration velocity analysis.

INTRODUCTION

Migration velocity analysis based on downward continuation meth-
ods, also known aswave-equation migration velocity analysis, is
a technique designed as a companion to wave-equation migration
(Biondi and Sava, 1999; Sava and Fomel, 2002). The main idea of
WEMVA is to use downward continuation operators for migration
velocity analysis (MVA), as well as for migration. This is in con-
trast with other techniques which use downward continuation for
migration, but traveltime-based techniques for migration velocity
analysis (Clapp, 2001; Liu et al., 2001; Mosher et al., 2001).

WEMVA is closer to conventional MVA than other wave-equation
tomography methods (Noble et al., 1991; Bunks et al., 1995; Forgues
et al., 1998) because it tries to maximize the quality of the mi-
grated image instead of trying to match the recorded data. In this
respect, our method is related to Differential Semblance Optimiza-
tion (Symes and Carazzone, 1991) and Multiple Migration Fitting
(Chavent and Jacewitz, 1995). However, with respect to these two
methods, our method has the advantage of exploiting the power of
residual prestack migration to speed up the convergence, and it also
gives us the ability to guide the inversion by geologic interpretation.

WEMVA benefits from the same advantages over traveltime esti-
mation methods as wave-equation migration benefits over Kirch-
hoff migration. The most important among them are the accurate
handling of complex wavefields which are characterized by multi-
pathing, and the band-limited nature of the imaging process, which
can handle sharp velocity variations much better than traveltime-
based methods (Woodward, 1992). Complex geology, therefore, is
where WEMVA is expected to provide the largest benefits.

WEMVA is based on a linearization of the downward-continuation
operator using the Born approximation. This approximation leads
to severe limitations on the magnitude and size of the anomalies
that can be handled. It, therefore, cannot operate successfully ex-
actly in the regions of highest complexity. Other methods of lin-
earization are possible (Sava and Fomel, 2002), but neither one al-
lows for arbitrarily large anomalies.

In our early tests (Biondi and Sava, 1999), we construct the im-
age perturbation using Prestack Stolt Residual Migration (PSRM)
(Sava, 2000). In summary, this residual migration method provides
updated images for new velocity maps that correspond to a fixed
ratio (ρ) of the new velocity with respect to the original velocity

map. Residual migration is run for various ratio parameters, and
finally we pick the best image by selecting the flattest gathers at
every point.

The main disadvantage of building the image perturbation using
PSRM is that, for large velocity ratio parameters (ρ), the back-
ground and improved images can get more thanπ/4 out of phase.
Therefore, the image perturbation computed by the forward oper-
ator and the one computed by residual migration are fundamen-
tally different, and can have contradictory behaviors when using
the Born-linearized WEMVA operator for inversion.

Alternative methods can be used to create image perturbations for
WEMVA, in compliance with the Born approximation and com-
puted directly from the background image. We present an ana-
lytic differential procedure starting from the background image and
leading to image perturbations similar to the ones created using the
forward WEMVA operator.

We begin with a discussion of scattering theory in the context of
wavefield extrapolation, followed by a brief description of the method
we use to create differential image perturbations, and a synthetic
example.

For all our examples, we migrate data using wavefield extrapola-
tion techniques. We present the images decomposed in components
proportional to the reflection magnitude for various incidence an-
gles at the reflector, commonly referred to as angle-domain com-
mon image gathers (Weglein and Stolt, 1999; Sava and Fomel,
2003; Rickett and Sava, 2001).

WAVEFIELD SCATTERING

In migration by downward continuation, the wavefield at depthz+

1z, W (z+1z), is obtained by phase-shift from the wavefield at
depthz, W (z):

W (z+1z) = W (z)e−ikz1z. (1)

Using a Taylor series expansion, the depth wavenumber (kz) de-
pends linearly on its value in the reference medium (kzo) and the
laterally varying slownesss(x, y,z) in the depth interval under con-
sideration

kz ≈ kzo +
dkz

ds

∣∣∣∣
s=so

(s−so) . (2)

so represents the constant slowness associated with the depth slab

between the two depth intervals.dkz
ds

∣∣∣
s=so

represents the derivative

of the depth wavenumber with respect to the reference slowness
and can be implemented in many different ways, e.g by the Fourier-
domain method of Huang et al. (1999).

The wavefield downward continued through thebackgroundslow-
nesssb (x, y,z) is

Wb (z+1z) = W (z)e
−i

[
kzo+

dkz
ds

∣∣∣
s=so

(sb−so)
]
1z

, (3)

and the full wavefieldW (z+1z) depends on the background wave-
field Wb (z+1z) by

W (z+1z) = Wb (z+1z)e
−i dkz

ds

∣∣∣
s=so

1s1z
, (4)



Figure 1: Correct model: slowness (top), stacked image (middle)
and selected angle-gathers (bottom).

where1s represents the difference between the true and back-
ground slownesses1s = s−sb.

Defining thewavefield perturbation1W (z+1z) as the difference
between the wavefield propagated through the medium with cor-
rect velocity,W (z+1z), and the wavefield propagated through
the background medium,Wb (z+1z), we can write

1W (z+1z) = W (z+1z)−Wb (z+1z) (5)

= Wb (z+1z)

[
e
−i dkz

ds

∣∣∣
s=so

1s1z
−1

]
. (6)

Equation (5) represents the foundation of the wave-equation mi-
gration velocity analysis method. One major problem with Equa-
tion (5) is that the wavefield1W and slowness perturbations1s
are not linearly related. For inversion purposes, we need to find
a linearization of this equation around the reference slowness,so.
Biondi and Sava (1999) linearize Equation (5) using the Born ap-
proximation (ei φ

≈ 1+ i φ). With this choice, the WEMVA Equa-
tion (5) becomes

1W (z+1z) = Wb (z+1z)

[
−i

dkz

ds
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s=so

1s1z

]
. (7)

The wavefield perturbation1W in Equation (7) turns into an image
perturbation1R after we apply an imaging condition, e.g. sum-
mation over frequencies. The WEMVA objective function is

min
1s

‖1R−L1s‖ (8)

whereL is a linear operator defined recursively from Equation (7)
at every depth level and frequency. We estimate the slowness up-
date by minimizing this objective function through an iterative con-
jugate gradient optimization technique.

DIFFERENTIAL IMAGE PERTURBATION

Residual migration can be used to create image perturbations (1R).
In its simplest form, we can build1R as a difference between an
improvedimage (R) and thereferenceimage (Rb)

1R = R−Rb, (9)

whereR is derived fromRb as a function of the parameterρ,
which is the ratio of the original and improved velocities. Of course,
the improved velocity map is unknown explicitly, but it is described
indirectly by the ratio map of the two velocities.

If we denote by 1 the velocity ratio that corresponds to the back-
ground velocity model and define1ρ = ρ − 1, we can also write
the discrete version of the image perturbation as

1R ≈
R−Rb

ρ −1
1ρ, (10)

Figure 2: Background model for WEMVA: slowness (top), stacked
image (middle) and selected angle-gathers (bottom).

equation which can also be written in differential form as

1R ≈
dR

dρ

∣∣∣∣
ρ=1

1ρ, (11)

or, equivalently, using the chain rule, as

1R ≈
dR

dkz

dkz

dρ

∣∣∣∣
ρ=1

1ρ, (12)

wherekz is the depth wavenumber defined for PSRM.

Equation (12) offers the possibility to build the image perturbation
directly. We achieve this by computing three elements: the deriva-
tive of the image with respect to the depth wavenumber, and two
weighting functions, one for the derivative of the depth wavenum-
ber with respect to the velocity ratio parameter (ρ), and the other
one for the magnitude of the1ρ perturbation from the reference to
the improved image.

Firstly, the image derivative in the Fourier domain,dR
dkz

, is straight-
forward to compute in the space domain as

dR

dkz

∣∣∣∣
ρ=1

= −i zRb. (13)

The derivative image is nothing but the imaginary part of the mi-
grated image, scaled by depth.

Secondly, we can obtain the weighting representing the derivative
of the depth wavenumber with respect to the velocity ratio parame-

ter, dkz
dρ

∣∣∣
ρ=1

, starting from the double square root (DSR) equation

written for prestack Stolt residual migration (Sava, 2000):

kz = kzs +kzr

=
1

2

√
ρ2µ2 −|ks|

2
+

1

2

√
ρ2µ2 −|kr |

2,

whereµ is given by the expression:

µ2
=

[
4
(
kzo
)2

+ (|kr |− |ks|)2
][

4
(
kzo
)2

+ (|kr |+ |ks|)2
]

16
(
kzo
)2 ,

(14)(
kzs,kzr

)
are the depth wavenumbers and(|ks| ,|kr |) are the spatial

wavenumbers for the sources and receivers, respectively.

The derivative ofkz with respect toρ is

dkz

dρ
= ρ

(
µ2

4kzs
+

µ2

4kzr

)
, (15)



Figure 3: Image perturbation by the forward WEMVA operator:
slowness perturbation (top), stacked image (middle) and selected
angle-gathers (bottom).

therefore

dkz

dρ
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ρ=1

=
µ2

2
√

µ2 −|ks|
2

+
µ2

2
√

µ2 −|kr |
2

. (16)

Finally, 1ρ can be picked from the set of residually migrated im-
ages at various values of the parameterρ (Sava, 2000). One crite-
rion that could be used to estimate1ρ is the flatness of the angle-
domain image gathers, which can be measured through derived pa-
rameters, such as stack power, semblance or differential semblance.

EXAMPLE

We demonstrate the method on a synthetic example consisting of
several dipping reflectors embedded in laterally varying slowness.
Figure 1 shows from top to bottom the correct slowness model, the
stacked reflectivity model and a few selected angle-gathers. We use
this model to create a synthetic dataset.

Figure 2 shows from top to bottom the background slowness model,
the stacked reflectivity and a few selected angle-gathers. Since we
do not use the correct slowness, the angle gathers are not flat and
the image is distorted.

Figure 3 shows from top to bottom the slowness perturbation be-
tween the true and the background slowness models, and the image
perturbation created using the forward linear WEMVA operator:
the stacked image in the middle panel and a few selected angle-
gathers (bottom). This image is, by definition, consistent with the
Born approximation. In practice, however, we need to go backward
and compute a slowness perturbation from an image perturbation.

The problem with the Born approximation is illustrated in Figure 4.
The image perturbation obtained as a difference between the back-
ground image and an improved version of it is presented in the
bottom two panels. The phase difference between corresponding
events is larger than a fraction of the wavelet, and clearly vio-
lates the Born approximation. The inverted slowness anomaly (top
panel) shows the characteristic sign changes usually seen in wave-
equation tomography when the limits of the Born approximation
are violated.

Figure 5 illustrates our method for computing the image perturba-
tion from the background data. We run residual migration as indi-
cated in the preceding section and then pick at every location in the
image the best velocity ratioρ which corresponds to flat gathers.
We also compute and image derivative according to Equation (12)
without the1ρ scaling. Figure 5 shows the stacked image deriva-
tive and a few selected angle-gathers. The shape of this image is
similar to that of the background image, with some phase and am-
plitude differences introduced by the derivative process.

Figure 4: Difference image perturbation: inverted slowness per-
turbation (top), stacked image (middle) and selected angle-gathers
(bottom).

We use Equation (12) and the1ρ weight (Figure 5) to create the
differential image perturbation (Figure 6). This image perturbation
is comparable in shape and magnitude with the ideal perturbation
(Figure 3). This indicates that we have succeeded to compute from
the background image an image perturbation which is consistent
with the Born approximation, and, therefore, we can use the lin-
earized WEMVA operator without the danger of divergence due to
images going out of phase.

For comparison, Figure 7 shows, from top to bottom, the image per-
turbations computed with the forward WEMVA operator, the one
computed as a simple difference between the background image
and an improved version of it, and the one computed by our dif-
ferential procedure. We observe in the middle panel events which
are largely out of phase, indicating that we cannot use the Born lin-
earization. In contrast, the differential image perturbation is fully
consistent with the one computed by the forward operator.

We use the image perturbation depicted in the bottom two panels of
Figure 6 to invert for the corresponding slowness perturbation. We
use 10 linear iterations for this example, with only one non-linear
iteration.

Finally, Figure 8 shows from top to bottom the updated slowness
model, and the updated staked image in the middle panel and a few
selected angle-gathers in the bottom panel, which are much flatter
than the ones of the background image (Figure 2).

CONCLUSIONS

We present an extension of our recursive wave-equation migra-
tion velocity analysis method operating in the image domain. Our
method is based on the linearization of the downward continuation
operator that relates perturbations in slowness to perturbations in
image. The fundamental idea is to improve the quality of the slow-
ness function by optimizing the focusing of the migrated image,

Figure 5: Differential image perturbation: picked1ρ map (top),
stacked image differential (middle) and selected angle-gathers (bot-
tom).



Figure 6: Differential image perturbation: inverted slowness per-
turbation (top), stacked image (middle) and selected angle-gathers
(bottom).

and not by fitting the data recorded at the surface directly.

We construct the image perturbations by a differential operator ap-
plied to the reference image. In this way, we ensure that we do
not violate the inherent Born approximation made in our method.
This method directly constructs the image perturbation from the
background image, and is always compliant with the Born approx-
imation which is the underlying assumption of WEMVA. We show
that we can obtain slowness anomalies that are fully consistent
with those obtained by the application of the forward and adjoint
WEMVA operators.
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