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SUMMARY

Wave-equation migration velocity analysis (WEMVA) is a ve-
locity estimation technique designed to invert for velocity in-
formation using migrated images. Its capacity for handling
multi-pathing makes it appropriate in complex subsurface re-
gions characterized by strong velocity variation. WEMVA
operates by establishing a linear relation between a velocity
model perturbation and a corresponding migrated image per-
turbation. The linear relationship is derived from conventional
extrapolation operators and it inherits the main properties of
frequency-domain wavefield extrapolation. A key step in im-
plementing WEMVA is to design an appropriate procedure
for constructing image perturbations. Using time-lag extended
images, one can characterize the error in migrated images by
defining the focusing error as the shift of the focused reflec-
tion along the time-lag axis. Under the linear approximation,
the focusing error can be transformed into an image perturba-
tion by multiplying it with an image derivative taken relative
to the time-lag parameter. The resulting image perturbation is
thus a mapping of the velocity error in image space. This ap-
proach is computationally efficient and simple to implement,
and no further assumptions about smoothness and homogene-
ity of the velocity model and reflector geometry are needed.
Synthetic examples demonstrate the successful application of
our method to a complex velocity model.

INTRODUCTION

In regions characterized by complex subsurface structure, wave-
equation depth migration is a powerful tool for accurately imag-
ing the earth’s interior. However, the quality of the final image
greatly depends on the quality of the velocity model, thus con-
structing accurate velocity is essential for imaging.

Based on the domain in which the velocity estimation is imple-
mented, velocity analysis techniques can be roughly divided
into two categories. The first category includes techniques de-
veloped in the data domain prior to migration and usually de-
scribed as tomography. The input for this type of techniques is
the recorded seismic data. Velocity update is achieved by ad-
justing the velocity model to minimize the difference between
the recorded and predicted seismograms. The second category
includes techniques developed in the image domain after mi-
gration and usually described as migration velocity analysis
(MVA). The input for this type of techniques is the migrated
image obtained using an approximation of the velocity model.
Velocity update is performed by adjusting the velocity model
to optimize certain properties of the images, e.g. by using fo-
cusing or semblance analysis.

In practice, there are many possible approaches to employ the
techniques in the two categories mentioned here. However,
all such realizations share a common element that they need

a carrier of information to connect the input data or image to
the output velocity model. Thus the techniques for velocity
updates can also be divided into two categories as ray-based
and wave-based methods. The first category refers to tech-
niques which use wide-band rays as the information carrier
(Bishop et al., 1985; Stork and Clayton, 1991). By contrast, the
second category refers to techniques which use band-limited
wavefields as the information carrier (Woodward, 1992; Pratt,
1999; Sirgue and Pratt, 2004). Generally speaking, ray-based
methods have the advantages of simple implementation and ef-
ficient computation over wave-based methods. On the other
hand, wave-based methods are capable of handling compli-
cated wave propagation phenomena, which always happen in
complex subsurface regions. Therefore, they are more robust
and consistent with the wave-based migration techniques used
in such regions. In this paper, the focus is on the wave-based
migration velocity analysis method known as wave-equation
MVA (Sava and Biondi, 2004a,b; Albertin et al., 2006; Sava
and Vlad, 2008).

For the implementation of WEMVA, one important component
is the construction of an image perturbation which is linked lin-
early to a slowness perturbation. To construct the image pertur-
bation, measurement of the quality of migrated images must be
performed first. Sava and Biondi (2004b) discuss several types
of measurement for the error contained in migrated images,
for example, focusing analysis (MacKay and Abma, 1992; La-
fond and Levander, 1993) and moveout analysis (Yilmaz and
Chambers, 1984; Biondi and Sava, 1999). For the construction
of image perturbation, the most common approach is to com-
pare a reference image with an improved version of it. The
image-comparison approach has at least two drawbacks. First,
the improved version of the image is always obtained by re-
migration with one or more models, which is computationally
expensive. Second, if the reference image is incorrectly con-
structed, the difference between two images can exceed the
small perturbation assumption, which leads to the cycle skip-
ping problem. An alternative to this approach, discussed in
Sava (2003), uses prestack Stolt migration to construct a lin-
earized image perturbation. This alternative approach avoids
the cycle skipping problem, but suffers from the approxima-
tion embedded in the underlying Stolt migration.

Focusing analysis information can be extracted from time-lag
extended images (Sava and Fomel, 2006). The focusing error
is measured along the time-lag axis and quantified as the de-
parture of the focusing time-lag from zero. Higginbotham and
Brown (2008) propose a method to convert this focusing error
into velocity updates for the background model. However, this
approach uses vertical updates of the measured errors which
may fail in complex environments.

In this paper, we propose a new methodology for constructing
image perturbations based on the time-lag extended imaging
condition and focusing analysis. We demonstrate that the im-
age perturbation can be easily calculated by a simple multipli-
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cation of image derivatives and measured focusing errors. We
also demonstrate that this type of image perturbation is fully
consistent with the linearization embedded in WEMVA. We il-
lustrate our method by applying the technique to the complex
Sigsbee 2A model.

THEORY

Under the single scattering approximation, seismic migration
consists of two steps: wavefield reconstruction followed by
the application of an imaging condition. We commonly dis-
cuss about a “source” wavefield, originating at the seismic
source and propagating in the medium prior to any interac-
tion with the reflectors, and a “receiver” wavefield, originat-
ing at discontinuities and propagating in the medium to the
receivers (Berkhout, 1982). The two wavefields are kinemati-
cally equivalent at discontinuities. Any mismatch between the
wavefields indicates inaccurate wavefield reconstruction typi-
cally assumed to be due to inaccurate velocity. The source and
receiver wavefields can be represented as four-dimensional ob-
jects function of position x = (x,y,z) and frequency ω ,

us = us (x,ω) , (1)

ur = ur (x,ω) . (2)

An imaging condition is designed to extract from these extrap-
olated wavefields the locations where reflectors occur in sub-
surface. A conventional imaging condition (Claerbout, 1985)
forms an image as the zero cross-correlation lag between the
source and receiver wavefields:

r (x) =
X

ω

ur (x,ω)u∗s (x,ω) , (3)

where r is the image of subsurface and ∗ represents complex
conjugation. An extended imaging condition (Sava and Fomel,
2006) extracts the image by cross-correlation between the wave-
fields shifted by the time-lag τ:

r (x,τ) =
X

ω

ur (x,ω)u∗s (x,ω)e2iωτ . (4)

When the model used for imaging is erroneous, the images are
formed incorrectly. In the hypercube of time-lag extended im-
ages, this incorrect imaging is equivalent to a shift of focusing
from zero to nonzero time-lags. Therefore, we can measure the
difference between the time-lag at which the reflection focus
and the zero axis and define it as the quantity ∆τ , which we la-
bel as time-lag perturbation to be exploited for MVA. Further-
more, we can generalize the WEMVA operators constructed
for conventional imaging condition (Sava and Vlad, 2008) to
include this type of image extension.

We can characterize the true slowness model as a sum of the
background slowness sb with a slowness perturbation ∆s,

s(x) = sb (x)+∆s(x) . (5)

Accordingly, the image can also be characterized as a sum be-
tween the background image rb and an image perturbation ∆r:

r (x) = rb (x)+∆r (x) . (6)

The perturbation ∆s and ∆r are linearly related by the WEMVA
operator L:

∆r = L∆s . (7)

Since the information of ∆τ is available from measurements
performed on time-lag extended images, we can construct im-
age perturbation by a linearization of the image relative to the
time-lag parameter:

∆r (x,τ) =
∂ r (x,τ)

∂τ
∆τ, (8)

where the extended image derivative with respect to time-lag
τ is

∂ r (x,τ)
∂τ

=
X

ω

(2iω)ur (x,ω)u∗s (x,ω)e2iωτ . (9)

Notice that the construction of the extended image derivative
requires the same procedure as the one used for constructing
the extended images. The additional term 2iω acts as a scaling
factor applied at each frequency.

In summary, we construct the image perturbations for use in
connection with WEMVA using the following procedure:

• Migrate the image and output time-lag extended im-
ages according to equation 4;

• Measure ∆τ on time-lag panels by direct picking;

• Construct the extended image derivatives according to
equation 9;

• Construct the linearized image perturbation according
to equation 8.

Our methodology has the advantage over the method of Sava
and Biondi (2004a,b) that we do not need to make assump-
tions about the slowness background as is required by the lin-
earized Stolt procedure. Furthermore, our method does not as-
sume horizontal reflectors, as required by conventional depth-
focusing analysis technique. Our method also maintains a low
computational cost, since the calculation of the linearized im-
age perturbation, equation 8, adds just a trivial cost to that of
conventional migration. Overall, our approach provides an ef-
ficient way to construct image perturbations consistent with
the assumptions made about the WEMVA operator.

EXAMPLE

We illustrate our procedure using the Sigsbee 2A model (Paf-
fenholz et al., 2002). For simplicity, we consider just one re-
flector of the model in order to highlight the behavior of our
operator (Figures 1(a)-1(c)). Given the linear nature of the
imaging process, more reflectors contribute independently to
the velocity update. We use a scaled version of the true model
as the background slowness model for migration with extended
images. We refer to the difference between the true and back-
ground slowness models as the true slowness perturbation ∆s.
Figures 1(b) and 1(c) show the image and time-lag extended
images migrated with the background slowness model. The
reflector is mispositioned due to the incorrect slowness model.
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(a)

(b)

(c)

Figure 1: (a) Sigsbee 2A synthetic model, (b) migrated image
corresponding to the horizontal reflectors at the bottom of the
model and (c) time-lag CIGs corresponding to the background
slowness at several locations in the image. Each event corre-
sponds to a time-lag CIG just as the one shown in panel 2(a)
.

Figure 2(a) and 2(b) show the time-lag CIG and the constructed
∆τ panel obtained by picking ∆τ on panel 2(a) and by spread-
ing that information evenly along the corresponding reflector.
Then we construct the image perturbation by the procedure
discussed in the preceding section.

To verify the accuracy of the constructed image perturbation,
we apply the forward WEMVA operator to the true slowness
perturbation and obtain the true image perturbation. Figures 3(c)
and 3(d) depict the image perturbations obtained by the for-
ward WEMVA operator and our method, respectively. The two
images are similar both kinematically and dynamically. We ap-
ply the adjoint WEMVA operator to both image perturbations
to obtain slowness perturbations shown in Figures 3(a) and
3(b), which also exhibit good similarity. Therefore, we con-
clude that the image perturbation constructed by our method
is applicable to WEMVA since it matches the corresponding
perturbations.

Figures 4(a) to 4(e) depict the slowness perturbation back-
projected from the constructed image perturbation for different
shots, and Figure 4(f) depicts the result of slowness perturba-
tion stacked for all shots. The images show that the illumi-

nation pattern of the various shots is different, although con-
sistent with the illumination of the corresponding migration
procedure.

This example demonstrates that our procedure is applicable to
a shot-record imaging framework in complex media. This con-
clusion makes our technique particularly attractive for MVA
using wide-azimuth data. However, there is no particular limi-
tation of the type of carrier used to transfer the time-lag infor-
mation measured on the migrated images into velocity updates.
We could, in principle, use plane waves instead of shots as in-
formation carrier, thus achieving even higher computational
efficiency.

(a) (b)

Figure 2: (a) Time-lag CIG panel at x = 10.1 km and (b) picked
time-lag perturbation spread along the corresponding reflector.

CONCLUSIONS

We develop a new method to construct image perturbations for
wave-equation migration velocity analysis. The methodology
relies on the focusing information extracted from time-lag ex-
tended images. The shift of the reflection focusing along the
time-lag axis provides a measure of error. We use this infor-
mation in conjunction with image derivatives relative to the
time-lag parameter to construct image perturbations. Com-
pared with more conventional techniques for constructing im-
age perturbations, our approach is efficient, since it represents
a relatively trivial extension of the time-lag extended imaging
condition, and accurate, since it does not make use of Stolt-
like procedures which incorporate strong assumptions about
the smoothness of the background model. The results obtained
using the complex Sigsbee 2A model demonstrate the validity
of our method in complex environments.
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(a) (b)

(c) (d)

Figure 3: (a) Slowness perturbation obtained by applying the adjoint WEMVA operator to image perturbation (c). (b) Slowness
perturbation obtained by applying the adjoint WEMVA operator to image perturbation (d). (c) Image perturbation obtained by
applying the forward operator to the true slowness perturbation. (d) Image perturbation obtained by the linearized extended image
procedure.

(a) (b)

(c) (d)

(e) (f)

Figure 4: Slowness perturbation obtained from the image perturbation in Figure 3(d) for different shot positions at (a) 6.2 km, (b)
10.2 km, (c) 14.2 km, (d) 18.2 km and (e) 22.2 km. (f) Stacked slowness perturbation corresponding to all shots.
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