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Wavefield tomography (WT) constructs velocity models
using seismic wavefields (Tarantola, 1984; Pratt, 1999;
Sirgue and Pratt, 2004; Plessix, 2006; Symes, 2009).
Models are typically updated by matching simulated
and recorded data. This match imposes the strong as-
sumption that the chosen wave-equation is consistent
with the physics of wave propagation in the earth. Thus,
a significant part of WT is dedicated to removing the
components of the observed data that are inconsistent
with the assumptions made about the wave-equation.

A key component of WT is the objective function (OF)
measuring the match between simulated and recorded
data. We assume that the OF is convex, thus enabling
its minimization using gradient-based techniques. The
gradient calculation uses the adjoint state method (Plessix,
2006; Symes, 2009). This method consists of 4 steps:
(1) compute the state variables, i.e. seismic wavefields
obtained from the source by forward modeling; (2) com-
pute the adjoint source based on the OF and the state
variables; (3) compute the adjoint state variables, i.e.
seismic wavefields obtained from the adjoint source by
backward modeling; (4) compute the gradient using the
state and adjoint state variables.

The main sources of information in WT are the source
wavelet fs (e,x, ω) (hereby assumed to be known) and
the observed data fr (e,x, ω). The WT state variables,
i.e. the source and receiver wavefields, us (e,x, ω) and
us (e,x, ω), are obtained by solving the wave-equation:[

L (x, ω,m) 0
0 L∗ (x, ω,m)

] [
us
ur

]
=

[
fs
fr

]
. (1)

L denotes the wave operator, m are the model parame-
ters (e.g slowness squared), e is the experiment index, ω
is the frequency, and x are space coordinates {x, y, z}.

Data domain: We formulate data-domain WT (dWT)
as an inverse problem based on an OF defined using
the difference between the source and receiver wavefields
(Tarantola, 1984; Pratt, 1999):

JD =
∑
e

1

2
‖KD (us (e,x, ω)− ur (e,x, ω)) ‖2x,ω . (2)

Here, KD (e,x) is a mask operator restricting the wave-
fields to the receiver positions, i.e. to the observed and
simulated data. This common OF suffers, among other
things, from cycle skipping due to the oscillatory nature
of the subtracted wavefields, Figure 2(b). This prob-
lem is usually addressed by bootstrapping the frequency
from low to high, thus requiring that low frequency data
(∼ 1Hz) are acquired in the field. If this condition is
satisfied, we can define the adjoint source, gs (e,x, ω),
based on the source and receiver wavefields

g = KDKD (us − ur) , (3)

compute the adjoint state variable, as (e,x, ω), using
backward modeling,

L∗ (x, ω,m) as = gs , (4)

and evaluate the OF gradient by correlating the state
(us) and adjoint state (as) variables (Plessix, 2006):

∇mJD (x) =
∑
e,ω

ω2 (usas) . (5)
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Figure 1: (a) A shot with short acquisition aperture (no
diving waves), and (b) the Marmousi model.
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Figure 2: (a) The data spectrum, and (b) the OF for
dWT (blue) and iWT (red).

Image domain: We formulate image-domain WT (iWT)
using extended wave-equation imaging (Sava and Vas-
concelos, 2011). The OF is

JI =
1

2
‖KIP (λ, τ) r (x,λ, τ) ‖2x,λ,τ , (6)

where r (x,λ, τ) are extended images

r =
∑
e,ω

T (λ) us (e,x, ω)T (λ) ur (e,x, ω) e2iωτ , (7)

T (λ) indicates space shift and λ and τ are cross-correlation
lags. The mask KI (x) restricts the evaluation of the OF
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Figure 3: (a) iWT model starting from a v (z) model, (b) dWT model starting from the same v (z) model and (c)
dWT model starting from the iWT model.

to some image locations, and P (λ, τ) is a penalty oper-
ator applied in the extended space (Symes, 2009). The
extend image r (x,λ, τ) is just a proxy for the source
and receiver wavefields. This OF does not suffer from
the cycle-skipping problem, Figure 2(b). The source and
receiver adjoint sources, gs (e,x, ω) and gr (e,x, ω), can
be written as (Yang and Sava, 2011)

[
gs
gr

]
=

KIKI

∑
τ,λ

T
(
PP r

)
Ture

−2iωτ

KIKI

∑
τ,λ

T
(
PP r

)
Tuse

−2iωτ

 , (8)

and are used to simulate the adjoint state variables,
as (e,x, ω) (backward) and ar (e,x, ω) (forward),[

L∗ (x, ω,m) 0
0 L (x, ω,m)

] [
as
ar

]
=

[
gs
gr

]
. (9)

The OF gradient is the correlation of the state (us, ur)
and adjoint state (as, ar) variables: (Plessix, 2006):

∇mJI (x) =
∑
e,ω

ω2 (usas + urar) . (10)

Discussion: Both dWT and iWT use the same wave-
fields and wave operators, thus describing two forms of
WT which differ essentially just in the definition of the
OF. The image-domain OF is smooth and allows conver-
gence from a poor starting model, even if low frequencies
(i.e. <∼ 1Hz) are not present in the data – we avoid cy-
cle skipping. The data-domain OF is more abrupt near
the correct model, which enables convergence to a good
quality model – we achieve high resolution. Therefore,
dWT and iWT complement each-other and can be cas-
caded to obtain model updates even when the starting
model is wrong and when low frequency data are not
recorded. We conclude that the requirement that very
low frequency data are necessary for WT is simply an
artifact of the definition of the data-domain OF. Using
alternative OFs in the image-domain, we can construct
models that are close enough to enable convergence of
data-domain WT in the more conventional seismic band.

Example: We illustrate the method with data, Fig-
ure 1(a), simulated in the Marmousi model, Figure 1(b),
using relatively short offsets and in a frequency band
above 3Hz, Figure 2(a), thus eliminating offsets and fre-
quencies that enable a successful start of conventional

dWT. Our dWT is initialized either with a v (z) model
or with a model obtained by iWT, Figure 3(a). Fig-
ures 3(b) and 3(c) show the dWT results using the two
starting models, respectively. Both starting models gen-
erate reasonable results in the upper part of the model,
but only the iWT model is sufficiently close to allow a
good reconstruction in the deeper part.

Conclusion: WT can be formulated in the data-domain
or in the image-domain based on the same wavefields
and wave-equation. iWT can construct good starting
models for dWT, since its OF is not sensitive to cycle-
skipping. Conversely, dWT can construct high-resolution
models, since its OF is steep in the vicinity of the global
minimum. Cascading iWT and dWT eliminates the
need for extremely low-frequency in the acquired data.
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