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SUMMARY

From the elastic wave equation and the energy conservation
principle, we derive a new imaging condition for elastic wave-
fields. This imaging condition outputs a single image rep-
resenting the total reflection energy and contains individual
terms related to the kinetic and strain energy of the extrapo-
lated wavefields. An advantage of the proposed imaging con-
dition compared to alternatives is that it does not suffer from
polarity reversal at normal incidence. This imaging condition
also accounts for the directionality of the wavefields in space
and time and can be adapted for attenuation of backscattering
artifacts in elastic reverse-time migration. Numerical exper-
iments show the quality of energy images compared to con-
ventional counterparts, and the effectiveness of the imaging
condition in attenuating backscattering artifacts.

INTRODUCTION

Seismic wavefield imaging is usually implemented using the
acoustic wave equation, based on the inaccurate assumption
that only compressional waves propagate in the subsurface.
More accurate subsurface information describing, for exam-
ple, fracture distribution, drives the development of wavefield
imaging using the elastic wave equation. Multicomponent seis-
mic recording and improved computer resources have made
wavefield elastic imaging possible.

Wave-equation migration consists of two steps: wavefield ex-
trapolation in the subsurface, using data recorded at the sur-
face, and the application of an imaging condition with the
purpose of extracting the Earth’s reflectivity from wavefields
(Clærbout, 1985; Dellinger and Etgen, 1990; Yan and Sava,
2009). If a two-way elastic wave equation is used in the wave-
field extrapolation step, followed by an imaging condition rep-
resenting zero-lag crosscorrelation between the wavefields, the
imaging procedure is called elastic reverse time migration (RTM)
(Hokstad et al., 1998).

Many elastic imaging conditions have been proposed in recent
years (Etgen, 1988; Zhe and Greenhalg, 1997; Yan and Sava,
2007; Yan and Xie, 2010; Duan and Sava, 2014). Correlat-
ing the displacement fields for each component of the source
and receiver wavefields leads to images with a mix of P and S
modes, thus making interpretation challenging. Alternatively,
if the displacement wavefields are separated into P and S waves
using Helmholtz decomposition, one can correlate specific wave
modes from source and receiver wavefields (Etgen, 1988; Yan
and Sava, 2007). For both displacement and potential imag-
ing conditions, polarity reversal occurs due to changes in the
elastic wavefield polarization. Specifically, converted waves
change sign due to the different orientation of P and S polar-
ization vectors in relation to the interface (Balch and Erdermir,
1994). Polarity reversal corrections can be done either after

angle-domain imaging (Yan and Sava, 2008) or by exploiting
the relationship between incidence directions and reflector ori-
entation (Duan and Sava, 2014).

Here, we seek an imaging condition that produces an attribute
of the Earth’s reflectivity into a single image without polarity
reversal, thus facilitating interpretation and providing a con-
cise description of the imaged structures. Our imaging con-
dition is derived from the energy conservation principle of an
elastic wavefield.

THEORY

For an isotropic medium, we can write a wave equation:
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(x) are P and S velocities, respectively. The subscripts
t indicate time derivative. In order to obtain the energy con-
servation expression for elastic wavefields, we apply the dot
product between the elastic wave equation and U
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Rearranging the left-hand side by the chain rule and integrating
all terms over the whole spatial domain W, we obtain
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We can develop the two terms on the right-hand side of equa-
tion 3 separately. For the first term, using integration by parts
and then divergence theorem, we obtain
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Similarly, for the second term on the right-hand side of equa-
tion 3, we use the component-wise application of the Lapla-
cian operator —2 on the vector field U. Then, the application
of the dot product leads to the sum of three terms in the form
b

t

—2
b. For each component of the wavefield, using the Green’s
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first identity, the dot product on the right-hand side becomes a
Frobenius product:
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where k ·k2
F

is the Frobenius norm.

Then, equation 3 can be written as
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Equation 9 is in the form Ė(t) = 0. Therefore, the function E

measures the total energy of the wavefield within a domain:
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Equation 10 represents the total mechanical energy function in
terms of kinetic and potential energies at every point in space
and at all times. The first term, composed of particle veloc-
ity, represents the wavefield kinetic energy (Holstrom, 1968).
Under the assumption that the total energy is conserved, the
remaining terms of equation 10 can be interpreted as potential
energy:

• The — · U term captures the volumetric strain of the
elastic medium deforming under the influence of a pass-
ing wave

• The k—Uk
F

term captures, among other things, the tor-
sional deformation of the elastic solid

Defining equation 10 as the energy norm of a wavefield, we
can also define an inner product between wavefields U and V:
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IMAGING CONDITION

We propose a new elastic imaging condition based on the in-
ner product in equation 11 between source and receiver wave-
fields, followed by integration over time:
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Here, U(e,x, t) and V(e,x, t) are the source and receiver vec-
tor wavefields, respectively, and I

E

(x) is the scalar energy im-
age. We can describe this imaging condition as a dot product

between the following multidimensional vectors:
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Equations 13 and 14 define multidimensional vectors with thir-
teen components, of which three components are the wavefield
time derivatives (U

t

,V
t

), one is the scaled divergence of the
wavefields (— ·U,— ·V), and nine are from the tensor wave-
field gradient (—U,—V).

Therefore, we can rewrite the imaging condition equation 12
as
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This expression is analogous to the similar imaging condition
developed for acoustic wavefields (Rocha et al., 2015), and has
similar physical interpretation and application.

Vectors ⇤U and ⇤V are related to the polarization and prop-
agation directions of the elastic wavefields U and V. Decom-
posing the wavefield U in plane waves, we obtain

U = u0e

iw(p·x�t) , (16)

where u0 is the polarization vector, p is the slowness vector,
and w is the frequency. We assume that w is large and that the
vectors u0 and p are slowly varying in space and time, which
makes the spatial and temporal derivatives of u0 and p small
compared to w . Substituting the plane wave definition, equa-
tion 16, into the solution of the elastic equation 1, we obtain
the Christoffel equation for isotropic media:
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Multiplying equation 17 by u0 leads to
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The terms in the vectors ⇤U and ⇤V are also in function of
the polarization and slowness vectors u0 and p:
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where ⌦ indicates the outer product between two vectors, re-
sulting in a matrix.

We seek to define an imaging condition that attenuates waves
propagating along the same path and with the same polariza-
tion, i.e., elastic backscattering. Defining (⇤V)† as
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we compute the dot product between ⇤U and (⇤V)† as

⇤U · (⇤V)† = (23)
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(a)

(b)

(c)

(d)

Figure 1: Images with scalar and vector potentials: (a) PP, (b)
PS, (c) SP and (d) SS. Note that backscattering artifacts do not
occur in (b) and (c) due to correlation of different wave modes.

Using the relation 18, we obtain

⇤U á(⇤V)† = 0 , (24)

i.e., the dot product is zero everywhere except at locations
where reflectors exist or different wave modes interact, since
the vectors p and u0 are different for U and V at these loca-
tions. Therefore, the dot product in equation 24 nullifies the
waves that propagate on the same path and have the same po-
larization. Such events include reflection backscattering, div-
ing waves, direct and head waves from the same wave modes.
Therefore, the imaging condition

I
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attenuates backscattering artifacts in elastic RTM images.

(a)

(b)

(c)

(d)

Figure 2: (a) Kinetic and (b) potential energy images; total
energy image (c) with and (d) without backscattering.

EXAMPLES

Using a simple model with a horizontal reflector at z = 1.5km,
we test the proposed imaging condition and compare it with its
conventional counterparts in Figures 1 and 2. We also include
a reflector in the migration velocity that causes backscattering
artifacts. In the PS (Figure 1b) and SP (Figure 1c) images, the
converted reflections do not correlate with the incident waves,
thus freeing these images from backscattering artifacts. The
energy imaging condition also shows backscattering artifacts
(Figure 2c). However, using the modified energy imaging con-
dition in equation 25, we attenuate the backscattering artifacts
(Figure 2d).

Figures 3a and 3b show elastic energy images for the Mar-
mousi model. Using the energy imaging condition in equa-
tion 12, we obtain the image in Figure 3a, which presents
backscattering artifacts. We attenuate these artifacts in Fig-
ure 3b using the imaging condition from equation 25. The
individual elastic images for shots do not show polarity rever-
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(a)

(b)

Figure 3: Marmousi elastic migration with the energy imaging condition. Energy image using (a) imaging condition equation 15,
and (b) imaging condition equation 25. The image in (b) shows no artifacts from polarity reversal and attenuated backscattering
energy compared to (a).

sal at normal incidence, and therefore, stacking is constructive,
leading to a good quality image, as seen in Figure 3b.

CONCLUSIONS

The energy imaging condition offers an alternative to conven-
tional elastic imaging conditions, which use potentials or dis-
placement components. This alternative combines all wave
modes into a single image and does not suffer from polarity
reversal, as is the case for conventional images using con-
verted modes, either with potentials or displacements. The
energy imaging condition accounts for wavefield directional-
ity, including the wavefield propagation and polarization di-
rections. We describe this imaging condition as the projection
between the multidimensional vectors ⇤U and ⇤V (built us-
ing the extrapolated wavefields U and V), whose terms contain

information about wavefield directionality. By exploiting the
wavefield directionality, we are able to attenuate the backscat-
tering artifacts in elastic images, without making use of artifi-
cial low-pass (e.g. Laplacian) filters.
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