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SUMMARY

We propose a least-squares reverse time migration (LSRTM)
that uses a proper imaging condition to obtain faster
convergence rates when compared with similar methods
using conventional imaging conditions. The proposed
modeling and migration operators use spatial and tem-
poral derivatives that attenuate acquisition artifacts and
deliver a better representation of the reflectivity and
scattered wavefields. We apply the method to two Gulf
of Mexico (GOM) field datasets: a 2D towed-streamer
benchmark dataset and a 3D ocean-bottom node (OBN)
dataset. We show the improvement in resolution of the
LSRTM images, as well as the superior convergence rate.

INTRODUCTION

Wavefield migration delivers an image of subsurface struc-
ture using wavefield extrapolation methods (Sun et al.,
2003; Biondi, 2012). For complex geological settings,
the two-way wave equation is generally used for extrap-
olation and the migration procedure is known as reverse
time migration (RTM) (Baysal et al., 1983; McMechan,
1983; Lailly, 1983). In practice, however, data record-
ings are always incomplete and possibly aliased and ir-
regular, causing wavefield migration to degrade image
quality and resolution especially for greater depths (Zhang
et al., 2015). Such degradation occurs because migra-
tion represents the adjoint operator of single-scattering
modeling, and therefore it is not a good approximation
of the inverse operator that correctly reverses propaga-
tion of seismic data (Claerbout, 1992).

Considering these imaging quality issues, least-squares
migration (LSM) is proposed to deliver images with
more accurate amplitudes, illumination compensation,
and reduced footprint of the acquisition geometry (Chavent
and Plessix, 1999; Nemeth et al., 1999; Kuhl and Sac-
chi, 2003; Aoki and Schuster, 2009). If the RTM engine
is used for migration, the method is called least-squares
reverse time migration (LSRTM) (Dai et al., 2010; Yao
and Jakubowicz, 2012; Dai and Schuster, 2012; Dong
et al., 2012). Least-squares migration involves a for-
ward operator (modeling) and an adjoint operator (mi-
gration) to achieve an image that best explains the data
at receivers with respect to an objective function. To
achieve the least-squares solution, one generally employs
gradient methods that decrease the objective function
iteratively (Hestenes and Stiefel, 1952; Scales, 1987).

Because of the high computational cost of LSRTM, which
is at least an order of magnitude greater than RTM,
some authors suggest techniques that expedite conver-
gence towards the true reflectivity model. For instance,
a common procedure to obtain faster rates of conver-
gence is to use an approximate of the Hessian matrix

(Aoki and Schuster, 2009; Tang, 2009; Huang et al.,
2016). Here, we demonstrate that modeling and migra-
tion operators based on an imaging condition that de-
livers more accurate amplitudes and attenuate artifacts,
such as the one derived from the energy norm (Douma
et al., 2010; Whitmore and Crawley, 2012; Brandsberg-
Dahl et al., 2013; Pestana et al., 2013; Rocha et al.,
2016) also expedites convergence. This migration oper-
ator attenuates low-wavenumber artifacts, delivering a
better representation of subsurface reflectivity. The cor-
responding modeling operator uses spatial and temporal
derivatives based on the wave equation itself to generate
scattered wavefields from the energy image.

THEORY

We can define acoustic wavefield migration as

m = LTdr , (1)

where LT is the migration operator based on some imag-
ing condition, dr is single-scattered data recorded at
receiver locations, and m is an image (representing re-
flectivity). The operator LT involves back-propagation
of dr through an Earth model, thus generating a re-
ceiver wavefield Ur, and the application of an imaging
condition with the source wavefield Us. One generally
considers the migration operator as the adjoint operator
of linearized modeling, represented by operator L

dr = Lm , (2)

which generates single-scattering data dr at receiver lo-
cations using an image containing reflectors that act as
sources under the action of the source wavefield Us.
Therefore, we define L as an adjoint of a particular imag-
ing condition, and m is not necessarily defined in terms
of contrasts in the Earth model.

The conventional imaging condition is the correlation
between source and receiver wavefields Us and Ur:

m = (Us)T Ur . (3)

Since both wavefields are generated by extrapolation us-
ing an Earth model and truncated data at receivers, we
can rewrite equation 3 as

m = (E+Ksds)T E−Krdr , (4)

where E+ and E− are forward and backward extrapo-
lator operators, and Ks and Kr are source and receiver
injection operators. Then, we can express the conven-
tional migration operator as

LT = (E+Ksds)T E−Kr = UT
s E−Kr , (5)

and the modeling operator as

L = KT
r E+ (E+Ksds) = KT

r E+Us . (6)
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In other words, single-scattered data dr are obtained by
extraction at the receiver locations (KT

r ) of the wavefield
extrapolated (E+) with Usm as the source term.

The energy imaging condition for acoustic isotropic wave-
fields Us and Ur is defined as (Rocha et al., 2016)

m = (�Us)T �Ur , (7)

where � is the energy operator

� =

{
∇, 1

v (x)

∂

∂t

}
, (8)

and v (x) is the migration velocity. Using equation 4,
equation 7 becomes

m = (�E+Ksds)T �E−Krdr . (9)

Since equation 9 is a function of dr, one can write the
energy migration operator as

LT = (�E+Ksds)T �E−Kr = (�Us)T �E−Kr ,
(10)

and the energy modeling operator as

L = KT
r E+�

T� (E+Ksds) = KT
r E+�

T�Us . (11)

In other words, energy linearized modeling produces
scattered wavefield using �T�Usm as the source term,
which for a point in space and time can be written as[

�T�Usm
]

(x, t) =
m (x)

v2 (x)
Üs (x, t)

− ∇ · [m (x)∇Us (x, t)] .(12)

The same procedure to find a proper adjoint operator is
applicable to other imaging conditions. For instance,
applying a Laplacian operator on a conventional im-
age is theoretically equivalent to the application of the
imaging condition in equation 7 (Douma et al., 2010).
Knowing that the Laplacian operator is self-adjoint, the
imaging condition with Laplacian can be written as

m = ∇2 (Us)T Ur . (13)

The migration operator using the Laplacian is

LT = ∇2 (E+Ksds)T E−Kr = ∇2UT
s E−Kr , (14)

and the corresponding linearized modeling is written as

L = KT
r E+ (E+Ksds)∇2 = KT

r E+Us∇2 . (15)

EXAMPLES

To show how LSRTM with proper imaging conditions
get faster convergence compared to conventional meth-
ods, we obtain convergence curves from a LSRTM exper-
iment applied to a 2D GOM benchmark dataset, used
by many authors in the past as a benchmark dataset
(Dragoset, 1999; Guitton et al., 2012). Standard pre-
processing is applied to the dataset prior to LSRTM,
such as surface-related multiple suppression. We use 71
of the original 1001 shot records, resulting in a source

(a)

(b)

Figure 1: GOM benchmark dataset: (a) energy LSRTM
image. (b) Normalized objective functions for conven-
tional LSRTM (blue), LSRTM with Laplacian (red) and
energy (green) operators. Both energy and Laplacian-
based migration and modeling operators expedite con-
vergence relative to using conventional operators.

spacing of approximately 267m. The shot decimation
decreases the computational cost of the entire experi-
ment but also introduces truncation artifacts, which are
useful to test the effectiveness of the proposed LSRTM
in attenuating acquisition artifacts. We test three mod-
eling and migration operators for LSRTM: conventional
(equations 5 and 6), Laplacian based (equations 14 and
15), and energy-norm based (equations 10 and 11). The
objective functions (Figure 1b) of both alternative LSRTM’s
(energy and Laplacian) decrease faster than the one
from conventional LSRTM, with the one based on en-
ergy decreasing slightly faster when compared to its
Laplacian counterpart. Although the two alternative
LSRTM’s are theoretically equivalent, the discretization
in wavefield extrapolation imposes more loss of accuracy
of the numerical derivatives in image domain compared
to wavefield domain. For illustration, we show the en-
ergy LSRTM image in Figure 1a. As suggested, the en-
ergy migration and modeling operators applied either on
wavefield domain (equations 10 and 11) or on image do-
main in the form of a Laplacian operator (equations 14
and 15) provide faster convergence rates towards the fi-
nal reflectivity model.
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Figure 2: (a) GOM 3D dataset: 37 nodes spaced by approximately 800m, and sources densely distributed at the
surface of the model. (b) Velocity model. (c) Normalized objective functions for Laplacian based (red) and energy-
norm based (green) LSRTM’s.

Figure 3: GOM 3D dataset: energy RTM (left) and LSRTM (right) images for the inline section at y = 44.9km. Note
the increase in frequency content and illumination for the LSRTM image compared to RTM.

We apply our method to a 3D ocean-bottom node (OBN)
dataset from the Gulf of Mexico. We process the dataset
to obtain only the down-going pressure component and
perform mirror imaging (Godfrey et al., 1998; Ronen
et al., 2005) of shallow geological structures. We use 37
node gathers with sources densely distributed at the wa-
ter surface (Figure 2a), and the velocity model used in
shown in Figure 2b. Based on the fact that conventional
LSRTM has a worse performance in the preceding ex-
ample, we perform two LSRTM experiments: Laplacian
based LSRTM and energy-norm based LSRTM, which
has a slightly smaller objective function value over iter-
ations compared to its Laplacian counterpart, similarly
to the preceding example. Comparing with standard
RTM, we show the final energy LSRTM image of an in-
line section in Figure 3, and zoomed depth-sliced images
in Figure 4. The image in Figure 3 compares RTM and
LSRTM images side-by-side, and shows the increase in
illumination and frequency content (especially towards
low frequencies) in the LSRTM image. With a number
of iterations corresponding to two orders of magnitude
of the standard RTM computational cost, we obtain
LSRTM images that exhibit more focused diffractions
and delineated structures as shown by the depth slices

in Figure 4.

CONCLUSIONS

We demonstrate that using proper linearized modeling
and migration operators expedites LSRTM, which suf-
fers from high computational cost. We test modeling
and migration operators based on the energy norm, and
we obtain faster convergence rates in our inversion, since
our operators attenuate artifacts that do not properly
characterize subsurface reflectivity. Our field data ex-
amples shows the improvement in image quality by us-
ing an expedited LSRTM compared to regular RTM.
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Figure 4: GOM 3D dataset: RTM (left) and LSRTM (right) images at (a) z = 1.20km, (b) 1.55km, (c) and 1.77km.
The arrows indicate the greatest improvement in focusing of the diffractors and in delineation of the reflectors.
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