Elastic wave-mode separation for VTI media

Jia Yan and Paul Sava

Center for Wave Phenomena
Colorado School of Mines
Elastic reverse time migration

- wavefield reconstruction

- imaging condition
Elastic reverse time migration

- wavefield reconstruction
 separate wave-modes before/after

- imaging condition
Elastic reverse time migration

- wavefield reconstruction
 separate wave-modes before/after

- imaging condition
Elastic reverse time migration

- wavefield reconstruction
 separate wave-modes before/after

- imaging condition
 displacement/potential-based
Elastic reverse time migration

- wavefield reconstruction
 separate wave-modes before/after

- imaging condition
 displacement/potential-based
Imaging condition

- displacement-based
 cross-correlate Cartesian components

- potential-based
 cross-correlate wave-modes
Isotropic wavefield decomposition

\[W = \nabla \phi + \nabla \times \psi \]

- \(\phi \): scalar potential
- \(\psi \): vector potential
Isotropic wavefield decomposition

\[W = \nabla \phi + \nabla \times \psi \]

- \(\phi \): scalar potential
- \(\psi \): vector potential

\[P = \nabla \cdot W \]
\[S = \nabla \times W \]

- \(P \): compressional mode
- \(S \): shear mode
Isotropic media

\[P = \nabla \cdot \mathbf{W} = D_x \ast W_x + D_y \ast W_y + D_z \ast W_z \]
Isotropic media

\[P = \nabla \cdot \mathbf{W} = D_x \ast W_x + D_y \ast W_y + D_z \ast W_z \]

\[P = i \mathbf{k} \cdot \mathbf{\tilde{W}} = i k_x \mathbf{\tilde{W}}_x + i k_y \mathbf{\tilde{W}}_y + i k_z \mathbf{\tilde{W}}_z \]
Polarization vectors: isotropic media
Anisotropic media

\[qP = i \mathbf{U}(\mathbf{k}) \cdot \mathbf{\tilde{W}} = i \ U_x \mathbf{\tilde{W}}_x + i \ U_y \mathbf{\tilde{W}}_y + i \ U_z \mathbf{\tilde{W}}_z \]
Anisotropic media

\[qP = i \mathbf{U}(\mathbf{k}) \cdot \mathbf{\tilde{W}} = i U_x \mathbf{\tilde{W}}_x + i U_y \mathbf{\tilde{W}}_y + i U_z \mathbf{\tilde{W}}_z \]

\[qP = \nabla_a \cdot \mathbf{W} = L_x * W_x + L_y * W_y + L_z * W_z \]
Christoffel equation

\[
\left[G - \rho V^2 I \right] \mathbf{U} = 0
\]
Christoffel equation

\[
\begin{bmatrix}
G - \rho V^2 \mathbf{I}
\end{bmatrix} \mathbf{U} = 0
\]

VTI media

\[
\begin{bmatrix}
\left(c_{11}k_x^2 + c_{55}k_z^2 - \rho V^2 \right) & (c_{13} + c_{55})k_xk_z \\
(c_{13} + c_{55})k_xk_z & c_{55}k_x^2 + c_{33}k_z^2 - \rho V^2
\end{bmatrix}
\begin{bmatrix}
U_x \\
U_z
\end{bmatrix}
= 0
\]
Polarization vectors: VTI media

$\epsilon = 0.25$, $\delta = -0.29$
\[P = \nabla \cdot W \]
\[= D_x \ast W_x \]
\[+ D_y \ast W_y \]
\[+ D_z \ast W_z \]

ISO

stationary

\[qP = \nabla_a \cdot W \]
\[= L_x \ast W_x \]
\[+ L_y \ast W_y \]
\[+ L_z \ast W_z \]

ANI

nonstationary
“Derivative” operators

ISO

\[\frac{\partial}{\partial x} \]

\[\frac{\partial}{\partial z} \]

ANI

\[\frac{\partial}{\partial x} \]

\[\frac{\partial}{\partial z} \]
Model 1: constant velocities

\[V_{P0} = 3.0 \, \text{km/s}, \quad V_{S0} = 1.5 \, \text{km/s} \]
\[\epsilon = 0.25, \quad \delta = -0.29 \]

\[\rho = 1.0 \, \text{g/cm}^3 \]

\[\rho = 2.0 \, \text{g/cm}^3 \]
Isotropic displacement
Separation with $\nabla \cdot$ and $\nabla \times$
Separation with $\nabla_a \cdot$ and $\nabla_a \times$
Anisotropic displacement

Position

Depth

u_z

u_x
Separation with $\nabla \cdot$ and $\nabla \times$
Separation with $\nabla \cdot$ and $\nabla \times$
Separation with $\nabla_a \cdot$ and $\nabla_a \times$
Model 2: heterogeneous

- \(V_P \) Depth Position
- \(V_S \) Depth Position
- \(\rho \) Depth Position
- \(\epsilon \) Depth Position
- \(\delta \) Depth Position
Anisotropic stencils: nonstationary
Anisotropic displacement
Anisotropic displacement

Position

Depth

u_z

Position

u_x
Anisotropic displacement

Depth

Position

u_z

Position

u_x
Anisotropic displacement

Depth

\[u_z \]

\[u_x \]
Separation with $\nabla \cdot$ and $\nabla \times$
Separation with $\nabla \cdot$ and $\nabla \times$
Separation with $\nabla_a \cdot$ and $\nabla_a \times$
Model 3: elastic Sigsbee 2A
Anisotropic displacement
Anisotropic displacement
Anisotropic displacement

Position

Depth

u_z

Position

u_x
Separation with $\nabla \cdot$ and $\nabla \times$
Separation with $\nabla \cdot$ and $\nabla \times$
Separation with $\nabla_a \cdot$ and $\nabla_a \times$
Conclusions

- anisotropic (VTI) wave-mode separation
- non-stationary filters
- complex media
Future work

- sensitivity analysis to anisotropy
- TTI extension
- 3D wave-mode separation
- anisotropic elastic RTM