Extended CIPs for anisotropic wave-equation migration

Paul Sava (CSM)
Tariq Alkhalifah (KAUST)
wave-equation imaging

wavefield reconstruction

imaging condition
wavefield reconstruction

source wavefield

\[\mathcal{L} (\nu, \epsilon, \delta) [W_s (x, t)] = D_s (x_s, +t) \]

receiver wavefield

\[\mathcal{L} (\nu, \epsilon, \delta) [W_r (x, t)] = D_r (x_r, -t) \]

Alkhalifah (2000), ..., Fowler et al. (2010)
conventional imaging condition

\[R (x) = \sum_{\text{shots}} \sum_{t} W_s (x, t) W_r (x, t) \]

- \(x \): space coordinates
- \(t \): time coordinate
the semblance principle

redundant images describe the same structure,
if the model used for imaging is correct
the semblance principle

redundant images describe the same structure,
if the model used for imaging is correct

data-space
 experiments
 (e.g. shots)

image-space
 extensions
 (e.g. angles)
extended imaging condition

\[R(x, \lambda, \tau) = \sum_{\text{shots}} \sum_{t} W_s(x - \lambda, t - \tau) W_r(x + \lambda, t + \tau) \]

- \(\lambda \): space-lag coordinates
- \(\tau \): time-lag coordinate
$R(x, \lambda, \tau)$
$R (x, \lambda, \tau)$
planar approximation of the reconstructed wavefields
reflector with arbitrary orientation
source wavefield – planar approximation
unshifted wavefields – form an image
$W_s (x - \lambda, t)$

$W_r (x + \lambda, t)$

space shifted wavefields – do not form image
$W_s(\mathbf{x} - \lambda, t - \tau)$

$W_r(\mathbf{x} + \lambda, t + \tau)$

space/time shifted wavefields – form an image
Δt_1

Δt_2

angle dependence – space/time shift
moveout function
superposition of shots
conclusion

fast sparse CIP construction

access model accuracy information

update models using MVA
acknowledgment

the sponsors of the
Center for Wave Phenomena
at
Colorado School of Mines