Analysis of converted-wave extended images for migration velocity analysis

Jia Yan and Paul Sava*
Center for Wave Phenomena
Colorado School of Mines
what are extended images?

redundant representations of migrated images

Rickett and Sava (Geophysics, 2002)
Sava and Fomel (Geophysics, 2006)
Sava and Vasconcelos (Geophysical Prospecting, 2010)
conventional imaging condition

\[R(\mathbf{x}) = \sum_{\text{shots}} \sum_{t} W_s(\mathbf{x}, t) W_r(\mathbf{x}, t) \]

- \(W_s(\mathbf{x}, t) \): source wavefield
- \(W_r(\mathbf{x}, t) \): receiver wavefield
extended imaging condition

\[R(x, \lambda, \tau) = \sum_{\text{shots}} \sum_{t} W_s(x - \lambda, t - \tau) W_r(x + \lambda, t + \tau) \]

- \(\lambda \): space-lag extension
- \(\tau \): time-lag extension
how do we analyze extended images?

consider subsets of the image

Sava and Vasconcelos (Geophysical Prospecting, 2010)
Sava and Vlad (Geophysics, 2011)
CIGs: fixed \(\{x, y\} \) coordinates
CIPs: fixed $\{x, y, z\}$ coordinates
how do the extended CIPs look?

image “cubes” at fixed space positions
correct velocity
how do we use the extended CIPs?

extract information for migration velocity analysis
correct velocity
high velocity
low velocity
migration velocity analysis

\[J(\nu) = \frac{1}{2} \| P[R(\nu)] \|^2 \]

- \(J(\nu) \): objective function
- \(P[\cdot] \): penalty operator
- \(R(x, \lambda, \tau) \): extended image

Symes (Geophysical Prospecting, 2008)
what is the penalty operator?

penalizes image distortion from an ideal shape
simplified reflection geometry
conventional imaging condition

\[p_s \cdot (x - x_s) = (t - t_p) \]
\[p_r \cdot (x - x_r) = (t - t_s) \]

\[R(x) = \sum_{\text{shots}} \sum_t W_s(x, t) W_r(x, t) \]
extended imaging condition

\[
\mathbf{p}_s \cdot (\mathbf{x} - \mathbf{x}_s - \lambda) = (t - t_p - \tau)
\]

\[
\mathbf{p}_r \cdot (\mathbf{x} - \mathbf{x}_r + \lambda) = (t - t_s + \tau)
\]

\[
R (\mathbf{x}, \lambda, \tau) = \sum_{\text{shots}} \sum_{t} W_s (\mathbf{x} - \lambda, t - \tau) W_r (\mathbf{x} + \lambda, t + \tau)
\]
\[(q \cdot \lambda) [\sin \theta] = v \tau\]
\[(\mathbf{n} \cdot \lambda) \left[\gamma \cos (\theta - \delta) - \cos (\theta + \delta) \right] + (\mathbf{q} \cdot \lambda) \left[2 \sin (\theta + \delta) \right] = 2v_p \tau\]
PS
conventional image
CIPs for one shot
CIPs for all shots
CIPs for all shots
penalty function for all shots
objective function for various velocities
summary

- extend CIP moveout function
- penalty operator for MVA
- smooth objective function
acknowledgments

the sponsors of the Center for Wave Phenomena at Colorado School of Mines