Wavefield tomography without low frequency

Paul Sava, Esteban Díaz & Tongning Yang

Center for Wave Phenomena
Colorado School of Mines
Waveform inversion

\[
\min_{m} J = \| d_{\text{obs}} (x_r, t) - d_{\text{pre}} (x_r, t, m) \|^2
\]

- \textit{d}: data
- \textit{m}: model
- \textit{x}_r: receiver coordinates
- \textit{t}: observation time
in phase
off phase
off phase

[Graph showing waveforms and color-mapped data with labels for time frequency and phase difference]
off phase
in phase
wavefield tomography: definition

A procedure for estimating the earth model using seismic wavefield discrepancies.
\[ u_s(e, x_s, t) \]

\[ u_s(e, x, t) \]

\[ L(m)[u_s(e, x, t)] = u_s(e, x_s, +t) \]

*forward time propagation*
\[ L(m) [u_r(e, x, t)] = u_r(e, x_r, -t) \]

backward time propagation
data domain WT
$D(e, x, t) = u_s(e, x, t) - u_r(e, x, t)$
\[ J_d (v) = \sum_e \| K_r (e, x) D (e, x, t) \|^2 \]

\[ D (e, x, t) = u_s (e, x, t) - u_r (e, x, t) \]
$C(e, x, \tau) = \sum_t u_s(e, x, t - \tau) u_r(e, x, t + \tau)$
$$J_d(v) = \sum_e \| P(\tau) K_r(e, x) C(e, x, \tau) \|^2$$

$$C(e, x, \tau) = \sum_t u_s(e, x, t - \tau) u_r(e, x, t + \tau)$$
correlation
image domain WT
\[ C(e, x, \lambda, \tau) = \sum_t u_s(e, x - \lambda, t - \tau) u_r(e, x + \lambda, t + \tau) \]
\[ R(x, \lambda, \tau) = \sum_e C(e, x, \lambda, \tau) \]
$J_i(v) = \| P(\lambda, \tau) K_i(x) R(x, \lambda, \tau) \|^2$
WT objective functions

\[ J_d(v) = \sum_e \| K_r(e, x)D(e, x, t) \|^2 \]

\[ J_i(v) = \| P(\lambda, \tau)K_i(x) \sum_e C(e, x, \lambda, \tau) \|^2 \]
difference

local minima
correlation

global minimum
difference

high resolution
correlation

low resolution
difference & correlation
Marmousi example
correct model
shot gather
data spectrum
starting velocity
objective functions
starting velocity
image-domain WT + data-domain WT
conclusion

We don’t really need low frequencies!
acknowledgments