Do we really need low frequencies in waveform inversion?

Paul Sava

Center for Wave Phenomena
Colorado School of Mines
psava@mines.edu
Waveform inversion

\[\min_{m} J = \left\| d_{obs}(x_r, t) - d_{pre}(x_r, t, m) \right\|^2 \]

- **d**: data
- **m**: model
- **x_r**: receiver coordinates
- **t**: observation time
in phase
off phase
in phase
We need low frequencies.
the question

Do we really need low frequencies?
wavefield tomography: definition

A procedure for estimating the earth model using seismic wavefield discrepancies.
\[u_s(e, x_s, t) \]

\[L(m) [u_s(e, x, t)] = u_s(e, x_s, +t) \]

forward time propagation
\(L(m)[u_r(e, x, t)] = u_r(e, x_r, -t) \)

backward time propagation
data domain WT
\[D(e, x, t) = u_s(e, x, t) - u_r(e, x, t) \]
\[J_d(v) = \sum_e \| K_r(e, x)D(e, x, t) \|^2 \]

\[D(e, x, t) = u_s(e, x, t) - u_r(e, x, t) \]
\[
C(e, x, \tau) = \sum_t u_s(e, x, t - \tau) u_r(e, x, t + \tau)
\]
\[J_d(v) = \sum_e \| P(\tau) K_r(e, x) C(e, x, \tau) \|^2 \]

\[C(e, x, \tau) = \sum_t u_s(e, x, t - \tau) u_r(e, x, t + \tau) \]
image domain WT
\[C(e, x, \lambda, \tau) = \sum_t u_s(e, x - \lambda, t - \tau) u_r(e, x + \lambda, t + \tau) \]
\[R(x, \lambda, \tau) = \sum_e C(e, x, \lambda, \tau) \]
The diagram consists of several plots and images. The top left plot shows the function $\tau(s)$ with a contour indicating variations with depth z (in km). The top middle plot depicts λ_x (in km) as a function of z, where λ_x represents the characteristic length scale. The top right plot continues to show λ_x with a different orientation.

Below these plots is a large horizontal image labeled $R(x)$, which likely represents a cross-sectional view of a medium or system. The vertical green line in the $R(x)$ image might indicate a specific condition or measurement point.

The term "correct" is also present, suggesting that the diagram or its interpretation is accurate.
\[J_i(v) = \| P(\lambda, \tau) K_i(x) R(x, \lambda, \tau) \|^2 \]
WT objective functions

\[J_d(v) = \sum_{e} \| K_r(e, x) D(e, x, t) \|^2 \]

\[J_i(v) = \| P(\lambda, \tau) K_i(x) \sum_{e} C(e, x, \lambda, \tau) \|^2 \]
difference

local minima
correlation

global minimum
difference

high resolution
correlation

low resolution
Marmousi example
correct model
shot gather
data spectrum
starting velocity
objective functions
starting velocity
image-domain WT
image-domain WT + data-domain WT
We don’t really need low frequencies!
acknowledgments