Passive wavefield imaging using the energy norm

Daniel Rocha1, Paul Sava1 and Jeffrey Shragge2

Center for Wave Phenomena, Colorado School of Mines1
University of Western Australia2
Wavefield-based passive imaging

anisotropic elastic

– displacement

– wave modes
wave modes

energy
Autocorrelation imaging condition

\[I(x) = \sum_{t} W(x, t) W(x, t) \]
Autocorrelation imaging condition

\[l_{PP}(x) = \sum_t P(x, t) P(x, t) \]

\[l_{SS}(x) = \sum_t S(x, t) \cdot S(x, t) \]
$P \ast P = PP$
$S \ast S = SS$
Crosscorrelation imaging condition

\[I_{PS}(x) = \sum_{t} P(x, t)S(x, t) \]
$P \ast S = PS$
Autocorrelation imaging condition

\[I_{UUU}(x) = \sum_{t} U(x, t) \cdot U(x, t) \]
Energy imaging condition

\[l_{EN}(x) = \sum_{t} \left[\rho \dot{U} \cdot \ddot{U} - (\zeta \nabla U) : \nabla U \right] \]
Energy imaging condition

\[I_{EN}(x) = \sum_{t} \left[\rho \dot{U} \cdot \dot{U} - (c \nabla U) : \nabla U \right] \]

- kinetic
- potential
Imaging conditions

conventional: \(I(x) \)

extended: \(I(x, \lambda, \tau) \)
PS

1. low
 \[
 \frac{V_P}{V_S}
 \]

2. correct
 \[
 \frac{V_P}{V_S}
 \]

3. high
 \[
 \frac{V_P}{V_S}
 \]
\[
\frac{V_P}{V_S}
\]

low

correct

high
Conclusions

Elastic imaging condition for passive data

- improves focusing at the source
- requires no wave-mode decomposition
- handles arbitrary anisotropy