Wavefield reconstruction using the wavelet transform

Iga Pawelec1, Paul Sava1 and Michael Wakin2

1 Center for Wave Phenomena, CSM
2 SINE Center for Research in Signals and Networks, CSM
CSM Geophysics Field Camp

- dense nodal acquisition (1.25m)
- non-linear sweep (4-140Hz)
large dynamic range
sampling: 1.25m
sampling: 2.5m
data aliasing

dynamic range

gaps pattern

land seismic data
constant amplitude
Fourier domain alternatives

curvelet transform
+ optimally sparse
+/- highly redundant
- limited to 3D
- slow computation

wavelet transform
- limited directionality
+ no redundancy
+ implemented in nD
+ fast computation
Fourier domain alternatives

curvelet transform
+ optimally sparse
+- highly redundant
- limited to 3D
- slow computation
wavelet transform: multi-resolution

A: low frequency
H: horizontal details
V: vertical details
D: diagonal details
wavelet transform: multi-resolution

A: low frequency
H: horizontal details
V: vertical details
D: diagonal details

\[A_1 = A_2 \oplus H_2 \oplus V_2 \oplus D_2 \]
coiflet 6
Data Reconstruction Approaches

<table>
<thead>
<tr>
<th>Sparse Recovery</th>
<th>POCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Curvelet Implementation</td>
<td>• Curvelet Implementation</td>
</tr>
<tr>
<td>• No Parameters</td>
<td>• Easy Formulation</td>
</tr>
<tr>
<td>• Recovery Guarantees</td>
<td>• Convergence Issues</td>
</tr>
</tbody>
</table>
sparse recovery

\[\hat{\alpha} = \arg \min_{\alpha} \| \alpha \|_1 \quad \text{s. t.} \quad d = T\Phi^T\alpha \]

\(\alpha \): signal in the wavelet domain

\(T \): sampling matrix

\(\Phi \): sparsifying transform

\(d \): data in time domain
projection onto convex sets

$$\min_{f \in \mathcal{P}} J = \|f - g\| \quad \text{s. t.} \quad Pf = g$$

\mathcal{P}_a - subspace for data with gaps
\mathcal{P}_b - subspace for fully sampled data
projection onto convex sets

\[
\min_{f \in \mathcal{P}} J = \|f - g\| \quad \text{s. t.} \quad Pf = g
\]

\(\mathcal{P}_a\) - subspace for data with gaps
\(\mathcal{P}_b\) - subspace for fully sampled data
projection onto convex sets

\[
\min_{f \in \mathcal{P}} J = \|f - g\| \quad \text{s. t.} \quad Pf = g
\]

- \(\mathcal{P}_a\) - subspace for data with gaps
- \(\mathcal{P}_b\) - subspace for fully sampled data
projection onto convex sets

\[
\min_{f \in \mathcal{P}} J = \|f - g\| \quad \text{s. t.} \quad Pf = g
\]

\(\mathcal{P}_a\) - subspace for data with gaps
\(\mathcal{P}_b\) - subspace for fully sampled data
projection onto convex sets

\[\min_{f \in \mathcal{P}} J = \|f - g\| \quad \text{s. t.} \quad Pf = g \]

\(\mathcal{P}_a \) - subspace for data with gaps
\(\mathcal{P}_b \) - subspace for fully sampled data
field data examples

• large dynamic range
• complex wave patterns
• slow surface waves
full data
data with gaps
sparse recovery
data with gaps
data with gaps
sparse recovery
data with gaps
POCS
Summary

Sparsity Promotion
- + accurate kinematics
- + relative amplitudes
- - geometry sensitive
- - missing details
- + no parametrization

POCS
- + accurate kinematics
- + relative amplitudes
- + robust geometry
- - missing details
- - non-intuitive thresholding
future research directions

• expansion to 5D
• increasing sensor spacing
• higher reconstruction accuracy
Wavelet domain reconstruction can overcome the large dynamic range problem.

take home message
acknowledgements

• Geophysical Technology Inc.
• Dawson Geophysical
• CSM Geophysics Field Camp crew