Waveform tomography based on local image correlations
Francesco Perrone* and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

SUMMARY

Common velocity analysis is based on the invariance of migrated images with respect to the experiment index (shot number, plane-wave take-off angle, etc.) or extension parameters (reflection angle, correlation lags in extended images, etc.). All the information available, i.e. the entire survey, is used for assessing the quality of the model used for imaging. This approach is effective but forces a clear separation between imaging and velocity model building. Here, we ask a complementary question: how much information about the velocity model is contained in a minimum number of images? Starting from an alternative statement of the semblance principle, we propose a measure of velocity error based on local correlations of pairs of migrated images. We design an objective function and implement a local, gradient-based optimization scheme to reconstruct the velocity model. Our methodology is “full-wave” because it is not based on a linearization of the imaging operator (in contrast with linearized wave-equation migration velocity analysis techniques). The gradient of the objective function is computed using the adjoint-state method.

INTRODUCTION

Seismic imaging includes estimation of both the position of the structures responsible for the recorded data and a model that describes the propagation in the subsurface. The two problems are related since a model is necessary to infer the position of the reflectors. The recorded wavefields are extrapolated in the model by solving a wave equation and crosscorrelated with a synthetic source wavefield simulated in the same model (Claerbout, 1985). Under a single scattering approximation, reflectors are located where the source and receiver wavefields match in time and space. If the velocity model is inaccurate, the reflectors are positioned at incorrect locations.

Wave-equation tomography is a family of techniques that estimate the velocity model from finite bandwidth signals. The inversion is usually formulated as an optimization problem, where the correct velocity minimizes an objective function that measures the inconsistency between simulated and observed data. Full-waveform inversion (FWI) (Tarantola, 1984; Pratt, 1999; Sirgue and Pratt, 2004) addresses the estimation problem in the data space and measures the mismatch between observations and simulated data. FWI aims to reconstruct the exact model that generates the recorded data. By matching both travelt ime and amplitude information, FWI allows one to achieve high-resolution results (Sirgue et al., 2010). Nonetheless, it needs a source estimate, the physics of wave propagation must be correctly modelled and a good parametrization (for example, impedance vs. velocity contrasts) is crucial (Kelly et al., 2010). Moreover, an accurate initial model is key to avoid cycle skipping and convergence to the global minimum of the objective function. Migration velocity analysis (MVA) (Fowler, 1985; Faye and Jeannot, 1986; Al-Yahya, 1989; Chavent and Jacewitz, 1995; Biondi and Sava, 1999; Sava et al., 2005; Albertin et al., 2006) defines the objective function in the image space and is based on the semblance principle (Al-Yahya, 1989). Groups of experiments and the associated images are analyzed. If the velocity model is correct, the images from different experiments must be consistent since the Earth is assumed stationary on the time scale of the seismic experiments. MVA leads to smooth objective functions and well-behaved optimization problems (Symes, 1991; Symes and Carazzone, 1991), and it is less sensitive to the initial model than FWI. On the other hand, because we lose the information about the data amplitudes, the estimated model shows lower resolution than the FWI result. MVA measures either the invariance of the migrated images in an auxiliary dimension (reflection angle, shot, etc.) (Al-Yahya, 1989; Sava and Fomel, 2003; Xie and Yang, 2008) or focusing in an extended space (Rickett and Sava, 2002; Symes, 2008; Sava and Vasconcelos, 2009). A large number of shots and good illumination are necessary to pick moveout curves or assess focusing. Moreover, because of the high memory requirement for storing the information from each experiment, only a subset of the image is considered in the evaluation of the objective function. For example, common-image gathers (CIGs) (Rickett and Sava, 2002; Yang and Sava, 2011) or common-image point (CIPs) (Sava and Vasconcelos, 2009) are computed at fixed lateral positions or picked image points along reflectors, respectively, and both methods require migration of all the shots that illuminate the location where the CIGs/CIPs are constructed.

We propose an objective function that operates in the image space and does not need CIGs. We consider small groups of images from neighboring experiments and formulate the semblance principle in the shot-image domain, instead of the extended space at selected CIGs. We use the morphologic relationship between images from neighboring experiments to define a measure of relative shifts in the image space. This approach reduces the memory requirements and allows us to include all image points in the velocity analysis step.
Waveform tomography based on local image correlations

Figure 1: Images of a flat reflector obtained using a velocity model that is (a) too high, (b) correct, and (c) too low. For each model we compute the sensitivity kernel associated with the highlighted box. Panels (d), (e), and (f) show the sensitivity kernels for the corresponding models.

Figure 2: Local image correlations ((a), (b), and (c)), penalty operators ((d), (e), and (f)), and penalized local correlations ((g), (h), and (i)) for the box highlighted in Figure 1 and the three models (velocity too high, correct, and too low, respectively).

THEORY

MVA is based on the semblance principle (Al-Yahya, 1989): a single Earth model generates the recorded data; then, if the velocity model is correct, different experiments must produce consistent images of the reflectors. The similarity between migrated images is usually assessed through the analysis of common-image gathers (CIGs), which can be constructed in different domains (reflection angle, ray parameter, sub-surface offset, etc.) (Sava and Fomel, 2003; Shen and Symes, 2008; Xie and Yang, 2008), or extended images (EIs) (Rickett and Sava, 2002; Symes, 2008; Sava and Vasconcelos, 2009). These approaches require migration of a large number of shots in order to measure moveout in the CIGs or focusing in EIs. Alternatively, we can measure the similarity of pairs of images by computing local correlations at each image point. We define the objective function

$$ J(m) = \frac{1}{2} \sum_{i} \sum_{\lambda} \| \mathbf{P}(\mathbf{x}, \lambda) c_i(\mathbf{x}, \lambda) \|_{2,\lambda}^2, \quad (1) $$

where $c_i(\mathbf{x}, \lambda) = \int_{\lambda/2}^{\lambda/2} R_{i+1}(\xi - \frac{\lambda}{2}) R_{i}(\xi + \frac{\lambda}{2}) \, d\xi$ is the local correlation of R_i and R_{i+1} and P is a penalty operator that highlights features that are related to velocity errors. The correlations are computed in local windows $w(\mathbf{x})$, which allow us to consider small subsets of the data. The index i spans the shots and m denotes the model. In this work, we define the objective function using pairs of shots, but we use the entire images obtained from them, instead of analyzing only sparsely selected CIGs or CIPs. The reduced input data leads to lower memory requirements with respect to other techniques based on common image-gathers or extended images. A possible alternative to measure inconsistencies between migrated images is the energy of the difference between them. Plessix (2006) uses the image difference as a regularization term for full-waveform inversion and not as a stand-alone objective function. The difference operator is a high-pass filter, enhances noise, and is sensitive to amplitude patterns. Images from different shots do not have identical amplitudes at a given spatial location because the wavefields experience different propagation paths. The bigger the separation between the shots, the higher the amplitude mismatch. The difference objective function considers this discrepancy a velocity error indicator and thus this objective function is intrinsically biased. Local correlations measure phase shifts between two images. Correlation is more robust because amplitudes are not directly used for measuring velocity errors. Nonetheless, the size of the correlation window must be such that it captures the relative shift between the two images. Local correlation in the image space is analogous to data correlation for FWI, as proposed by van Leeuwen and Mulder (2008, 2010).
Waveform tomography based on local image correlations

We restate the semblance principle as follows: if the velocity model is correct, two images from nearby experiments constructively interfere along the direction of the reflectors (Perrone and Sava, 2012). This is equivalent to having no moveout in shot-domain CIGs (Xie and Yang, 2008). Figure 1 shows the migrated images of a horizontal reflector with three velocity models (too high (a), correct (b), and too low (c)) and the sensitivity kernels ((d), (e), and (f)) for the local window highlighted by the box. The sign of the sensitivity kernel is consistent with the velocity error. Figure 2 shows the local correlations, penalty operators, and penalized correlations for the box in Figure 1. The similarity between two images is measured by the inconsistency between the local correlation and the dip estimated from one image. If the velocity model is correct, the maximum of the correlation lies along the reflector slope (the central column of Figure 2); the penalized correlation is an odd function, and the stack over correlation lags is practically zero, i.e., the two image are aligned and the model is correct. If the velocity is incorrect (the first and third column of Figure 2), we observe a deviation that depends on the sign and extent of the velocity error. This deviation is measured as a mismatch between the orientation of the penalty operator (constructed from the estimated dip in the image) and of the local correlation. The penalized correlation are not odd functions and their mean value measures the relative shift between the two images.

The penalty operator P is constructed from the estimated dip field (which depends on the model parameters as well). The dependence of P on the wavefield u can be accounted for by expressing the dip as a function of the image through gradient square tensors (van Vliet and Verbeek, 1995). This relationship is highly nonlinear and a thorough study of $\partial P/\partial u$ and its impact on the adjoint-state calculations is subject of further research.

SYNTHETIC EXAMPLES

We test our methodology on a synthetic example (Figure 3). Figures 3(a) and 3(c) show the initial model and the migrated image, respectively. The inaccuracy of the velocity model can be assessed from the shot-domain CIGs Figure 3(e): the depth of the reflectors changes as a function of experiment, i.e., the semblance principle is not satisfied. After 14 steepest-descent iterations, we recover the model in Figure 3(b). The layers can now be identified, and the image shows better positioning of the interfaces (Figure 3(d)). Figure 3(f) shows alignment of the partial images, which indicates an accurate model. The simplicity of the structures in the model helps the inversion because the definition of the penalty operators at each image point is unequivocal. We can define a dip vector at each image point; the pinch-outs of the sincline ($x = 2$ km and $x = 8$ km) do not influence the computed gradient. For more complicated models with conflicting dips and complicated geologic features (where there is no clear definition of the dip field), a more sophisticated design of the penalty operator is necessary. The eigenvalues and eigenvectors of the gradient square tensors (van Vliet and Verbeek, 1995) can be used to define ellipses that, in turn, may offer a structure oriented criterion for the definition of the penalty operators.

We run a second test using the Marmousi model. We simulate 78 shots with a finite-difference single-scattering modeling code and absorbing boundary conditions on the 4 sides of the model. The spacing between the shots is 0.08 km, and the first source is at $x = 0.96$ km; receivers are placed 0.008 km apart on the surface. The initial model is a heavily smoothed and scaled version of the original Marmousi slowness model. Figures 4(a), 4(c), and 4(e) show the initial model, migrated image, and shot-domain CIGs extracted every 1 km from $x = 0$ km, respectively. Conflicting dips are not yet handled correctly by our methodology because they make the definition of the penalty operators ambiguous. For this reason, we restrict the inversion to the first 1.5 km in depth, where the reflectors are more coherent.

The migrated image (Figure 4(c)) presents crossing interfaces and defocused fault planes; the shot-domain CIGs (Figure 4(e)) show variation of the depth of reflectors as a function of experiment, which indicates model inaccuracy. After 14 steepest-descent iterations, we obtain the results in Figures 4(b), 4(d), and 4(f). The interfaces are moved toward the correct position, and we observe better focusing of the fault planes. The shot-domain CIGs in Figure 4(f) show flatter events, which indicate a more kinematically accurate model.

CONCLUSIONS

We present an approach to waveform tomography based on the semblance principle in the shot-image domain. We define an objective function using appropriately penalized local image correlations that measure the relative shift between two images obtained from nearby experiments; the penalty operator enhances the mismatch between the structural information (the orientation of the reflector) and the shift between two images. The gradient of the objective function with respect to the model is computed with the adjoint-state method, which makes our technique a close relative to the more conventional full waveform inversion. Inversion on a simple synthetic and the Marmousi model shows the ability of our strategy to correct model errors.

ACKNOWLEDGMENTS

We would like to thank eni E&P for the permission to publish this work. The reproducible numerical examples in this paper use the Madagascar open-source software package freely available from http://www.reproducibility.org.
Waveform tomography based on local image correlations

Figure 3: (a) Initial slowness model and (b) slowness model after 14 iterations of waveform tomography; (c) initial image and (d) migrated image with the updated model; (e) initial shot-domain CIGs and (f) shot-domain CIGs with the updated model. Observe the improved positioning of the reflectors after the inversion. The curvature of the CIGs is corrected by the inversion algorithm.

Figure 4: (a) Initial slowness model and (b) slowness model after 14 iterations of waveform tomography; (c) initial image and (d) migrated image with the updated model; (e) initial shot-domain CIGs and (f) shot-domain CIGs with the updated model.
Waveform tomography based on local image correlations

REFERENCES